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Abstract

A remarkable capacity of the brain is its ability to autonomously reorganize memo-
ries during offline periods. Memory replay, a mechanism hypothesized to underlie
biological offline learning, has inspired offline methods for reducing forgetting in
artificial neural networks in continual learning settings. A memory-efficient and
neurally-plausible method is generative replay, which achieves state of the art per-
formance on continual learning benchmarks. However, unlike the brain, standard
generative replay does not self-reorganize memories when trained offline on its
own replay samples. We propose a novel architecture that augments generative
replay with an adaptive, brain-like capacity to autonomously recover memories.
We demonstrate this capacity of the architecture across several continual learning
tasks and environments.

1 Introduction

The brain strengthens and reorganizes its own memories during offline periods, especially sleep
[13, 24, 33]. A mechanism hypothesized to underlie this capacity is the replay of neural activity
associated with awake experience [5], which has been identified across species and shown to facilitate
memory [5, 16]. Theories posit that re-organizing memories offline is the brain’s key to continually
learning new tasks without disrupting existing knowledge across a lifetime [17].

In artificial neural networks (ANNs), learning new tasks without forgetting previous tasks (i.e., contin-
ual learning) remains a core challenge: In non-stationary settings where the data from previous tasks
are no longer accessible when learning a new task, incorporating new information can catastrophically
damage existing knowledge [18, 6]. Inspired by neuroscience, an approach to continual learning is to
replay data that reflect prior tasks when learning a new task [21, 30, 34, 3, 8, 9, 15, 26, 27, 28, 29, 25]
Replaying memories in a way that comprehensively reflects prior experience allows information
across temporally-separated experiences to be integrated gracefully. The most straightforward imple-
mentation of this approach stores veridical inputs of past tasks in a memory buffer, from which data
can be drawn for subsequent replay [26, 28, 3]. However, replaying veridical inputs is unlikely to
scale in real-world scenarios (e.g., when a general-purpose robot has to learn a large number of tasks
across a lifetime) and is biologically implausible [11, 32, 2]. A promising extension of the approach is
generative replay [30, 34], in which a generative model learns to reconstruct previous inputs, avoiding
storage of exact inputs. This form of replay is considered more neurally-plausible [34]; the brain does
not store exact copies of experience, and biological replay resembles noisy samples from a generative
model of the environment [11, 32]. On continual learning benchmarks in which a set of tasks have to
be learned sequentially, generative replay shows state of the art performance [35, 34].

Thus, generative replay appears to be a useful mechanism for both biological and artificial learning.
However, despite its similarity to neural replay, generative replay lacks a brain-like capacity to
adaptively self-reorganize memories offline. In this work, we first highlight a crucial difference
between how biological and artificial replay are typically assessed. We point out how, when assessed
in a way similar to empirical studies of offline processing, standard generative replay does not benefit
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Figure 1: Differences in the assessment of artificial and biological offline learning. a. In standard
continual learning settings, offline methods are assessed on their ability to help preserve memories
as ANNs sequentially learn a set of tasks. b. In neuroscience and psychology, studies of offline
learning examine how behavior changes across an offline period in the absence of external inputs. c.
When assessed as in empirical studies, standard generative replay does not benefit behavior, whereas
our model shows an improvement in performance through offline learning. Each dot shows the
performance of a model initialized with a unique random seed. The pre- and post- offline accuracy of
each model instantiation is connected by a grey line. Error bars represent ± 1 SEM. *** indicates
p<0.001.

behavior. We propose a novel architecture that endows generative replay with a brain-like capacity
of self-reorganization: The ability to self-repair damaged memories through offline processing. We
demonstrate this capacity of the model on MNIST [14] and CIFAR-100 [12].

2 Standard generative replay does not self-reorganize offline

Psychology and neuroscience research has investigated the ways in which the brain autonomously
reorganizes memories offline to enhance behavior. This work suggest that the offline brain can
go beyond what’s learned during wakefulness, giving rise to useful changes in behavior through
spontaneous processes [13, 24, 33]. These changes are indexed by differences in behavior before
versus after an offline period (Fig. 1b). For example, after learning a sequence of tasks, a period
of sleep can repair memories that have been damaged due to interference in a preceding wakeful
period [19, 20, 1, 4] — an adaptive capacity that biologically detailed models of sleep have explored
[7, 22, 31].

In contrast, standard continual learning evaluations in machine learning settings do not assess offline
algorithms’ ability to re-organize memories in an offline period: The effectiveness of algorithms
in these settings is quantified by how well they help retain past memories as ANNs sequentially
learn multiple tasks (Fig. 1a). Therefore, it is unclear if these algorithms can benefit behavior in the
same way the offline brain does. We highlight that, although generative replay effectively reduces
forgetting in such settings and has been proposed to mimic biological replay, it affords no learning
when trained on its own replay samples (Fig. 1c). Standard generative replay [30] consists of two
components: a generator that learns to reconstruct inputs x and a solver that learns to map inputs
to their target outputs y. To replay input-output pairs (x′, y′) that reflect the model’s knowledge of
past tasks, the generator samples x′ that reflect its learned reconstruction of past inputs and the solver
labels x′ as y′ according to its learned mapping. When mixed with data from a new task, (x′, y′)
can serve to preserve the knowledge of past tasks. However, when trained exclusively on (x′, y′),
the model shows no change in behavior, because (x′, y′) is fully consistent with the solver’s learned
input-output mapping. As a result, standard generative replay does not self-reorganize memories
offline.

3 An architecture that self-recovers memory

In this section, we propose a novel architecture that augments generative replay with a brain-like
capacity to reorganize memories offline: The ability to self-recover damaged memories. We assess
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Figure 2: The architecture of our model and its offline recovery of hidden representations. a. We
implemented the model as a variational autoencoder with feedforward connections that map the
reconstruction layer to a classification output. Each shaded trapezoid represents a stack of hidden
layers. During training, the model receives input-output pairs (x, y) and is trained to output (x′, y′)
that approximate (x, y). For CIFAR-100 experiments, the model (not illustrated here) learns to
output (h′, y′) that approximate (h, y), where h is a hidden representation of x. b. After the model
is trained on all available tasks, it learns from its own replayed samples offline. The model first
generates (x′, y′) pairs as offline training data (left). Given x′, the model outputs (x′′, y′′) and learns
to minimize the discrepancy between (x′, y′) and (x′′, y′′). In CIFAR-100 experiments, the model
(not illustrated here) minimizes the difference between (h′, y′) and (h′′, y′′), which are, respectively,
the model’s replayed samples and the model’s outputs given replayed hidden representations h′
as inputs. c. Analyses of the similarity between hidden layers’ representations of Task 1 inputs
across stages of learning suggest that the model can recover prior hidden representations, even those
corresponding to the very first task learned, through offline replay. The figure shows an example of
this analysis for a hidden layer — the layer that sits directly on top of the latent layer z.

this capacity of the model using two continual learning benchmarks: split-MNIST [36] and a split
CIFAR-100 task. After the model learns all tasks, we include an offline period where the model
learns exclusively from its own generated replay samples. To assess autonomous offline learning, we
measure the change in the model’s performance on testing data before and after this offline period.

3.1 The architecture of the model

Our proposed model (Fig. 2a) is a generative model trained to concurrently reconstruct a represen-
tation of each input x and produce a target output y. We implemented the model as a variational
autoencoder with feedforward connections mapping the reconstruction layer (i.e., the layer that
outputs the reconstructed representation of an input x) to an output layer of the same dimension as y
for classification. A neurally-plausible feature of the architecture is that, unlike standard generative
replay, the model does not employ separate pathways for generating input patterns and labels. As
in prior work [34], we trained the model to minimize the sum of a generative loss (i.e., the sum of
a reconstruction loss and a variational loss) and a cross-entropy classification loss. During offline
replay, the model first samples (x′, y′) pairs via the decoder. Generated samples x′ then go through
a full forward pass through the model, producing the model’s reconstruction and classification of
x′: (x′′, y′′). For offline learning, we consider (x′, y′) as the target outputs and (x′′, y′′) as the
model’s outputs (Fig. 2b). The offline model is trained to minimize the sum of a generative loss and a
distillation loss (see section A.2) computed with respect to (x′, y′) and (x′′, y′′).

3.2 Experiments on MNIST

In the first set of experiments, we tested the model on the split-MNIST task, in which the the MNIST
dataset is divided into five two-way classification tasks. During training, the model sequentially
learned the five tasks one-at-a-time. For training, we considered three continual learning protocols
that vary in terms of whether the task identity is provided at the time of test (see section A.4): task-
incremental (i.e., Task-IL), domain-incremental (i.e., Domain-IL), and class-incremental learning
(i.e., Class-IL) [35]. After learning, the model learns from its own replayed samples offline. Our
main interest was whether the model would self-improve performance through this offline period. To
allow room for performance improvement, we omitted replay in between tasks in the Task-IL and
Domain-IL scenarios to avoid ceiling performance prior to the offline period.
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Table 1: Mean post- vs. pre- offline accuracy change. For each experiment, each model was run 10
times with different random seeds, with mean (± SEM) accuracy across runs shown below.

Dataset Task-IL Domain-IL Class-IL

Our model split-MNIST 3.24 (±0.42) 23.30 (±0.57) 23.91 (±1.28)

BI-R split-MNIST -1.50 (±1.12) 0.13 (±0.06) 1.55 (±0.22)

Standard generative replay split-MNIST 0.00 (±0.00) 0.00 (±0.00) 0.00 (±0.00)

Control with shuffled targets split-MNIST -32.71 (±1.17) -8.68 (±1.84) -26.48 (±0.89)

Our model CIFAR-100 3.30 (±0.33) 6.55 (±0.24) 8.59 (±0.38)

To measure change in performance across the offline period, we tested the model on the same set of
held-out testing data both prior to and subsequent to the offline period. Across all scenarios and runs
of the model initialized with different random seeds, performance improves through the offline period
(Table 1). In contrast, neither standard generative replay nor a recently proposed modification of
generative replay, BI-R, [34] show reliable performance improvement through offline replay (Table
1). We performed a control experiment by randomly shuffling the pairings of x′ and y′ in the replayed
data. In this control experiment, we observed impaired performance through the offline period (Table
1), suggesting that the pairings of of x′ and y′ were essential to the model’s offline self-recovery of
memory. In sum, our results demonstrate that the model self-recovers impaired memories through
offline replay.

3.3 Tracking changes in hidden representations across tasks and offline learning

To gain insight into how offline replay promotes memory recovery in the model, we measured
the change in the model’s hidden representations across tasks and offline learning in split-MNIST
experiments. For this analysis, we withheld a set of inputs from Task 1. We computed the similarity
between each layer’s representations of these inputs at different stages of learning using centered
kernel alignment (CKA) [10, 23]. We observed that offline learning facilitated the recovery of
all layers’ initial representations of Task 1 inputs (i.e., each layer’s hidden representation at the
end of Task 1 learning): Across all layers, initial representations are more similar to post-offline
representations than to pre-offline representations (i.e., p<0.05 for post- vs. pre- offline improvement
in CKA similarity across all layers in all three scenarios; an example is shown in Fig. 2c).

3.4 Extending the model to CIFAR-100

To identify whether the memory recovery capacity of the model extends to more challenging settings,
we tested the model on the CIFAR-100 dataset consisting of naturalistic image categories. We trained
the model to sequentially learn 10 tasks, each of which is a ten-way classification task with ten image
classes from CIFAR-100. Due to the difficulty of CIFAR-100, for simulations with this dataset, we
adapted BI-R, a modification of generative replay that shows robust learning on this task [34]. As
in the model we used for MNIST experiments, we added feedforward connections on top of the
reconstruction layer for mapping reconstructed representations to classification outputs. Similar
to our experiments on MNIST, we disabled replay in the Task-IL and Domain-IL scenarios, and
trained the model on its replayed samples after all task learning. On CIFAR-100, we again observed
improved performance through the offline period across training scenarios. These results suggest that
the memory-recovery capacity of the model generalizes to more complex tasks.

4 Conclusion

In the brain, offline replay is generative and appears to benefit memories in the absence of external
data. In contrast, standard generative replay in artificial systems does not facilitate performance when
trained on its internally-generated replay data. We introduce an architecture that endows generative
replay with a capacity of self-reorganization: Self-recovery of damaged memories. The architecture is
a generative model augmented with feedforward connections for generating labels. After sequentially
learning a set of tasks on split-MNIST and CIFAR-100, our proposed architecture self-recovers
damaged memories when trained on its internally-generated data. By contrast, we do not observe this
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capacity in standard generative replay, in a recent extension of generative replay, nor in our model
when its replayed labels are shuffled. These results suggest that including task labels as part of the
generative process could enable generative replay models to learn from and self-reorganize existing
representations.
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A. Supplementary information

A.1 Network architecture

The architecture of our proposed model is a variational autoencoder with feedforward connections
for classification. The model consists of (i) an encoder network eϕ that maps an input vector x
to a vector of latent variables z, for which each unit consists of two values that parameterize a
Gaussian distribution (i.e., the two values of each unit respectively represent the mean and standard
deviation of a Gaussian distribution), (ii) a decoder network dψ that learns to map z to a vector
x′ that approximates inputs x, and (iii) a feedfoward classifier cω that maps x′ to an output y′ for
classification. Model parameters of eϕ, dψ, and cω closely follow those reported for BI-R [34]. In
MNIST experiments, eϕ and dψ are both fully connected networks that each consist of two hidden
layers with 400 hidden units, with ReLU activation functions. In CIFAR experiments, eϕ consists of
five pre-trained convolutional layers, which are identical to those employed in BI-R [34], and two
fully connected layers with 2000 hidden ReLU units, whereas dψ contains two fully connected layers
with 2000 hidden ReLU units. In both experiments, the architectures of cω, standard generative
replay, and BI-R are identical to the those employed in van de Ven et al. [34].

The architecture of our proposed model differs from that of standard generative replay and BI-R.
In standard generative replay, the generative model (i.e., the generator) and the classifier do not
share any connections and are trained separately (i.e., the generative model is trained on images, the
classifier is trained on labels). In contrast, our model combines the generator (i.e., the variational
autoencoder in our implementation) and the classifier into a single model. During training on external
inputs x, the classifier takes in x′ — the generator’s reconstruction of x, as input. In our model, the
classifier takes the output of the decoder as input, which allows task labels to be part of the generative
(i.e., decoding) process. In contrast, in BI-R, the classifier takes in a hidden representation within the
encoder as input.

A.2 Loss function

The model learns to minimize a loss Ltotal:

Ltotal = Lr + Lv + Lc

where Lr is a reconstruction loss, Lv is a variational loss, and Lc is a classification loss .

Lv, which measures the extent to which Gaussian distributions specified by outputs of the encoder
deviate from standard normal distributions, has the following definition for each sample x:

Lv(x;ϕ) =
1

2

D∑
i=1

(1 + log(σ
(x)2
j )− µ

(x)2
j − σ

(x)2
j )

where µ(x)
j and σ(x)

j are respectively the jth elements of µ(x) and σ(x), which are the outputs of the
encoder network eϕ given input x, and D is the length of the latent vector z.

Lr, which quantifies the discrepancy between input x and the output of the decoder network dψ, is
defined as:

Lr(x;ϕ, ψ) =
N∑
i=1

xi log(x’i) + (1− xi) log(1− x’i)

where xi is the value of the ith unit of the input x, x’i is the activation of the ith unit of the decoder’s
output x’ = dψ(z

(x)) with z(x) = µ(x) + σ(x) ∗ ϵ whereby ϵ is sampled from X ∼ N (0, I), and N is
the length of x.

Lc measures the discrepancy between the cω’s output and target output y. When the model is trained
on actual tasks, where y is a hard (i.e., one-hot) target, Lc is defined as:

Lc(x, y;ϕ, ψ, ω) = − log p(Y = y|x)
where p is conditional probability distribution the network outputs for the input x. In particular, p cor-
responds to the softmax output of cω . In the Task-IL but not in the Domain-IL and Class-IL scenarios,

8



the softmax output of cω activates only the output units representing classes in either the current
task or a replayed task as in prior work [34]. During training on each replay sample (x’, y’) where
y′ serves as a "soft" target with a probability for each active class, Lc is defined as a distillation lossLd:

Ld(x′, y′;ϕ, ψ, ω) = −T 2
M∑
i=1

y′i log p
T (Y = i|x′)

where M is the number of classes considered and T is a temperature parameter that controls the
relative scaling of probabilities that the model outputs. For replay, y′ is obtained using a copy of the
main model stored after it finishes training on the most recent task.

A.3 Training details

In our simulations, batch size is 128 for split-MNIST tasks and 256 for split CIFAR tasks. The model
undergoes 2000 iterations of training in each split-MNIST task and 5000 training iterations in each
split CIFAR task. We used the ADAM-optimizer (β1 = 0.9, β2 = 0.999) with a learning rate of
0.001 in split-MNIST simulations and 0.0001 in split CIFAR simulations. We applied the same
number of iterations and batch size during replay.

During online training, the model learns by minimizing Ltotal. During offline replay, the generator
(i.e., a variational autoencoder) samples x′ and the classifier labels x′ as y′. Given x′ as input, the
model is trained to minimize Ltotal with y′ as the target and Lc as the distillation loss Ld.

Across all simulations, the model learns a sequence of classification tasks, each of which includes a
subset of classes from a dataset (i.e., MNIST or CIFAR-100). In split-MNIST, the 10 digit classes are
divided into 5 tasks, each of which is a two-way classification task. In comparison, split CIFAR100
consists of 10 tasks, each of which is a ten-way classification task.

In the class scenario but not in the task and domain scenarios, in between tasks, the model generates
replay data, which is interleaved with task inputs. In all scenarios, after the presentation of all tasks,
in an offline phase, the model learns from replay data generated by a copy of itself.

A.4 Testing protocol

Model performance on each task is tested on 8 batches with a batch size of 128 (i.e., 1024 images in
total for each task). The exact same testing data is used to evaluate performance of models initialized
with different seeds both before and after offline replay on all tasks.

Following prior work [35], we assessed the model’s performance in three scenarios: Task-IL,
Domain-IL, and Class-IL scenarios. The main difference between the three scenarios is the extent
to which task identities are available at the time of test. Consider a split-MNIST task in which the
model learns five two-way digit classifications tasks sequentially. In the Task-IL scenario, given an
input image, the model selects between the two classes from the task that contains the image’s actual
class. In the Domain-IL scenario, the model selects whether it is the first or second class of a task
without knowing the task identity. Finally, in the Class-IL scenario, the model selects from all 10
classes that it has seen so far.
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