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Abstract

Classical models of biological memory assume that associative memory (AM)
in the hippocampus is achieved by learning a covariance matrix of simulated
neural activities. However, it has been also proposed that AM in the hippocampus
could be explained in the predictive coding framework. These two seemingly
disparate computational principles pose difficulties for developing a unitary theory
of memory storage and recall in the brain. In this work, we address this dichotomy
using a family of covariance-learning predictive coding networks (covPCNs).
We show that earlier predictive coding networks (PCNs) explicitly learning the
covariance matrix perform AM, but their learning rule is non-local and unstable.
We propose a novel model that implicitly learns the covariance matrix with Hebbian
plasticity and stably converges to the same memory retrieval as the earlier models.
We further show that this model can be combined with hierarchical PCNs to
model the hippocampo-neocortical interactions. In practice, our models can store
a large number of memories of structured images and retrieve them with high
fidelity. Our models shed light on how predictive processing can be performed
in the recurrent hippocampal network, and also unify two distinct computational
principles underlying the modelling of the hippocampus in AM.

∗Corresponding author

36th Conference on Neural Information Processing Systems (NeurIPS 2022), New Orleans, US.



1 Introduction

It is widely believed that the recurrent hippocampal network is crucial for associative memory
(AM) in the brain [1, 2, 3]. Early computational models of the hippocampus in AM, such as
the Hopfield Networks [4] and Correlation Matrix Memories [5], assumed that input patterns are
memorized by learning a covariance matrix representing the associations between individual neurons
activated by a memory item, which is encoded in the recurrent hippocampal connections. On
the other hand, experimental studies have revealed that the hippocampus is capable of predicting
ongoing sensory inputs, and has neurons encoding prediction errors [6, 7, 8]. It is thus hypothesized
that the computational principle underlying AM is a form of predictive coding (PC), where the
hippocampus generates predictions of the neocortical inputs, based on the memories stored in its
recurrent connections, and the dynamics of the whole network aim to minimize the prediction
errors [9]. Adopting the predictive coding network (PCN) developed by Rao and Ballard [10], a
computational model then verified this theoretical hypothesis, showing that a purely hierarchical PCN
can perform AM without recurrent connections between the neurons [11].

These two modelling approaches, namely AM via covariance learning and predictive coding, appear
to be entirely different and diverging: the covariance-learning models disregard the predictive nature
of hippocampal activities, whereas the PC model fails to capture the recurrent structure of the
hippocampal network that may encode the useful covariance information. This dichotomy poses
difficulties in understanding the hippocampus from a computational perspective. In this work we
aim to resolve this dichotomy by unifying these two approaches to modelling AM using a family
of covariance-learning PCNs (covPCNs). Specifically, we show that the covariance-learning PCN
proposed by Friston [12, 13], which we refer to as the explicit covPCN, performs AM. However, we
note that the plasticity rule of this model employs non-local information, and is also numerically
unstable. To address these issues, we propose in this work a novel recurrent PCN that learns the
covariance implicitly, called the implicit covPCN. We show that analytically, the memory retrieval of
the implicit and the explicit covPCNs are equivalent given the same cue, while the implicit model is
more stable in practice and only employs local Hebbian plasticity [14]. Furthermore, the implicit
model can also be combined with a hierarchical PCN [10, 11] to model the whole hippocampo-
neocortical region. Overall, our contribution is twofold: First, we implement PC within a plausible
and stable recurrent network, which sheds light on how predictive processing can be performed via
the recurrent hippocampal network. Second, we demonstrate that the recurrent PCNs also retains
the covariance-learning properties of classical models, thus unifying these classical models with the
PC framework. Such a unified description facilitates the theoretical understanding of computations
performed by the hippocampus in AM tasks.

2 Models

Explicit covPCNs The distinguishing feature of PCNs is the error neurons encoding the mismatch
between internally generated predictions and external inputs [10]. Friston [12, 13] extended the
original PCNs by introducing recurrent connections encoding the covariance matrix to weight the
error neurons. The model assumes that the input patterns {x(i)}Ni=1 are d-dimensional samples
from a Gaussian distribution with true mean µµµtrue and covariance matrix Σtrue, where i indicates
the ith sample within the dataset, and the bold font denotes vectors. The plasticity of the model,
parameterized by mean µµµ and covariance Σ, aims to maximize the log likelihood Fex (“ex” for
explicit) of observed neural activities x(i) given this Gaussian distribution via gradient ascent:

∆µµµ ∝ ∂Fex/∂µµµ =
∑

i
εεε(i), ∆Σ ∝ ∂Fex/∂Σ = −NΣ−1 +

∑
i
εεε(i)εεε(i)T (1)

where εεε(i) = Σ−1(x(i)−µµµ) is the (weighted) error. The above learning rules have a property that
both parameters will converge to the maximum likelihood estimate (MLE) of µµµtrue and Σtrue based
on the training data points, i.e. µµµ → 1

N

∑N
i=1 x(i) and Σ → 1

N

∑N
i=1(x(i) − µµµ)(x(i) − µµµ)T , by

setting ∆µµµ = ∆Σ = 0. We denote these MLEs of mean and covariance by x̄ and S respectively.
Therefore the parameter Σ will explicitly encode the sample covariance of the data S when the
learning converges, thus the name explicit covPCNs.
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Figure 1: A: The explicit (top) and implicit (bottom) covPCNs with 2-dimensional stimuli. B:
The hybrid PCN where the top hippocampal layer is an implicit covPCN, and the neocortical and
sensory layers follow the hierarchical PCN for AM in [11]. Expanded boxes present the detailed
computations. For simplicity we assume one neocortical layer and the same number of neurons in all
layers. Unlabeled connections have strengths 1. Subscripts denote vector indices/neuron numbers,
and superscripts with brackets denote layer numbers.

After learning, we fix the parameters µµµ and Σ, and provide a single cue x̃ to the network to initialize
the memory retrieval, i.e. we initialize the neural activity to x = x̃, and the explicit covPCN performs
inference by updating x according to the derivative of the log likelihood:

∆x ∝ ∂Fex/∂x = −εεε (2)

If x̃ is a corrupted training data point, the equation above will drive it towards its corresponding
training data point to achieve memory recall, as the original data point defines higher log likelihood
Fex. For details of derivations of Eq 1 and 2 see Appendix. The above neural dynamics can be
implemented within the network shown in Fig 1A, when d = 2. In this network, εεε and x are encoded
in activities of error and value neurons respectively, and parameters µµµ and Σ in synaptic weights.
The value neurons x receive the sensory inputs and also receive inhibition from εεε (Eq 2), while
the error neurons εεε = Σ−1(x − µµµ) receive excitatory inputs from the value neurons, inhibitory
inputs encoding the prior expectation µµµ, and lateral inhibitory inputs encoding the weight Σ. The
topmost value neurons have activity 1 so that µµµ can be encoded into synaptic strengths, following
the implementation in [15]. Notice that if we denote Σab as the synapse connecting the a-th and b-th
neuron in this explicit model, to update this single synapse (∆Σab), non-local synaptic strengths are
needed to compute the inverse (Σ−1)ab (Eq 1), making it biologically implausible. This is because
each entry in the matrix inverse depends on all entries in the original matrix, so each synapse in
the neural implementation has to have the global knowledge of all other synaptic strengths in the
network to update itself. As we will show later, this inverse term also poses significant computational
problems in practice.

Implicit covPCNs Notice that another way of encoding recurrent interactions between neurons,
while preserving the predictive nature of the network, is to let the neurons predict each other. With
this intuition, we parameterize the implicit covPCN with weight matrices W and ννν, with Wab

representing the synapse connecting the a-th and b-th neurons in the network, and ννν the bias vector.
W is zero-diagonal, implying no self-connection/self-prediction in this model. The implicit model
tries to maximize the following objective function given the dataset {x(i)}Ni=1 (“im” for implicit):
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Fim = −
∑

i
∥x(i)−Wx(i)− ννν∥22/2 (3)

In the implicit model, we define the prediction errors as εεε = x−Wx− ννν. Like the explicit model,
the implicit covPCN first updates its parameters W and ννν by performing gradient ascent on Fim:

∆ννν ∝ ∂Fim/∂ννν =
∑

i
εεε(i), ∆W ∝ ∂Fim/∂W =

(∑
i
εεε(i)x(i)T

)
diag=0

(4)

where the ()diag=0 notation means “enforcing the diagonal elements to be 0" as we want to keep the 0
diagonal elements of W unchanged. Notice that by setting ∆ννν and ∆W to 0 i.e., at the convergence
of learning, we obtain ννν = (I −W )x̄ and [(I −W )S]diag=0 = 0. Recall that x̄ and S denote the
MLEs of the meanµµµtrue and covariance matrix Σtrue, and that the parameters of the explicit covPCN,µµµ
and Σ, converge to x̄ and S. Therefore, the implicit covPCN also learns the mean and the covariance
matrix, without encoding them explicitly into its connections.

Like the explicit model, after learning, the implicit model performs inference after initializing the
activity to a cue input x = x̃ following the derivative of Fim with respect to x:

∆x ∝ ∂Fim/∂x = −εεε+WTεεε (5)

The above dynamics can be implemented in the network model in Fig 1B, by replacing the lateral
connections Σ with W that projects the predictions from all other value neurons into each error
neuron. Notice that the learning rule for the connection Wab is Hebbian, as it is simply a product
εaxb of the pre- and post-synaptic activities.

Hybrid PCNs We further use a hierarchical PCN [11] to model the cortical pre-processing of raw
sensory inputs for the implicit covPCN. According to a recent theory, the recurrent hippocampus
functions as a generative model that accumulates prediction errors from sensory and neocortical
neurons lower in the hierarchy, and sends descending predictions to the neocortex, to correct the
prediction errors in the neocortical neurons [9]. A demonstration of this hybrid PCN is shown in
Fig 1C. The layers in this hybrid model are connected by Θ

(l)
ab denoting the synapse between neuron

b in the lth layer (x(l)
b ) and neuron a in the (l + 1)th layer (x(l+1)

a ). This model captures both the
recurrent structure of the hippocampus and the predictive hippocampo-neocortical relationship [9].
For details of derivation and neural implementation of the hierarchical PCNs see [11].

3 Results

The equivalence of the explicit and implicit covPCNs in AM We now present the key result of
our work, that both explicit and implicit covPCNs perform AM, and that their retrievals are equivalent
given the same corrupted cue of the memories. First, we can show that the following theorem holds:

Theorem 1 After training has converged, given a partial cue of a memory x = [xk xm]
T , where xk

is the k-dimensional corrupted part and xm the m-dimensional intact part, the inferential dynamics
of both the explicit and implicit models (Eq 2, 5) on the corrupted part converge to:

x̂k = SkmS−1
mm(xm − x̄m) + x̄k (6)

where x̂k is the final retrieval of the corrupted xk, and Spq denotes the p by q submatrix when we
express the MLE S of the covariance matrix as a 2×2 block matrix. x̄k and x̄m denotes the top k and
bottom m elements of the MLE x̄ of the mean µµµ. See Appendix for details of derivation. Empirically,
we found that both explicit and implicit models can memorize 5× 5 random Gaussian patterns, and
their retrievals given a partially corrupted cue are identical (Fig 2A), consistent with the theorem.

Model performances with structured image data We next examine whether the models can
perform stable AM with more complex, structured data such as MNIST [16] and CIFAR10 [17]. The
results with the explicit, implicit and hybrid models are shown in Fig 2B. For these experiments,

4



A

B

C
original corrupted explicit implicit

original corrupted explicit implicit hybrid

Figure 2: A: Examples of the retrieval of explicit and implicit covPCNs in AM with random 5× 5
patterns sampled from a Gaussian distribution. B: Examples of the model (explicit, implicit and
hybrid) performances with MNIST [16] and grayscale CIFAR10 [17]. C: Mean squared errors (MSE)
of retrieval when the models are trained with different numbers of memories N .

we trained the networks to memorize 64 MNIST and grayscale CIFAR10 images, and provide half-
covered cues to the models to initialize the retrieval. Particularly, since the single-layer models are
recurrent, the number of value-error neuron pairs in these networks is the same as the number of
image pixels d and thus the number of parameters in these recurrent models is d2. To ensure that the
hybrid model have approximately the same number of parameters, we construct the hybrid model to
be a 3-layer network with d sensory neurons, d/2 hidden neurons and d/2 neurons in the topmost
implicit layer. As can be seen, the implicit and hybrid model performed well with these datasets,
whereas the retrievals of the explicit model are blurry.

Fig 2C shows a systematic investigation into the mean squared error (MSE) between the original and
retrieved images, across different number of memories of grayscale CIFAR10. To compare with prior
arts, we also trained a purely hierarchical PCN [11] with d sensory neurons and 3 hidden layers, all
with d/2 neurons, such that the number of parameters is the same as the networks mentioned above.
The implicit, hybrid and hierarchical models performed identically well, whereas the explicit model
have much higher retrieval MSE and unstable performance across different samples. This is due to
the necessity of computing the inverse Σ−1 during learning (Eq 1), which may introduce numerical
instability especially when the training data is high-dimensional, and has ill-conditioned covariance
matrices.

4 Discussion

Classical covariance-learning models of biological memory failed to capture the predictive nature of
hippocampal activities, whereas recent PC models for memory overlooked the covariance-encoding
recurrent structure of the hippocampus. In this work we have shown that 1) the predictive activities
of the hippocampal neurons can be implemented within a recurrent network and 2) the dichotomy
between covariance-learning and PC, two disparate computational principles, can be resolved by
implicitly encoding the covariance into recurrent PCN synapses. Such a unified description greatly
facilitates the theoretical understanding of computations performed by the hippocampus in AM
tasks. Looking ahead, such a PC-based model is potentially scalable to modern machine learning
models due to the close relationship between PC and deep learning, which has been revealed by
recent works [18, 19, 20, 21]. Its computational capability may thus facilitate the modelling of other
hippocampal functions, such as representation learning, navigation and temporal predictions, guiding
future computational and experimental research into these more complex tasks performed by the
hippocampus and thus inspiring more powerful artificial memory systems.
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Appendix

Explicit covPCN dynamics The objective function Fex is also the log likelihood of the assumed
Gaussian distribution N (µµµtrue,Σtrue), given the data points {x(i)}Ni=1:

Fex = −N

2
log |Σ| − 1

2

∑
i
(x(i)−µµµ)TΣ−1(x(i)−µµµ) (7)

Eq 1 and 2 naturally follows by taking the derivative of Fex with respect to µµµ, Σ and x.

The equivalent memory retrieval by explicit and implicit covPCNs Here we provide the details
of the derivation of Eq 6, showing that both explicit and implicit models obtain the same retrieval at
convergence. Recall that the parameters µµµ and Σ of the explicit model converges to the MLEs x̄ and
S at the convergence of learning, and we also assume that the inferential dynamics Eq 2 converges.
That is:

εεε = S−1(x− x̄) = 0 (8)

This equation can be written into its 2× 2 block matrix form:

[
Skk Skm

Smk Smm

]−1 [
xk − x̄k

xm − x̄m

]
= 0 (9)

The inverse of S in terms of its submatrices is:

[
Skk Skm

Smk Smm

]−1

=

[
Q−1 −Q−1SkmS−1

mm

−S−1
mmST

kmQ−1 S−1
mm + S−1

mmST
kmQ−1SkmS−1

mm

]
(10)

where Q is called the Schur complement of Smm in S [22] and Q = Skk − SkmS−1
mmST

km. Since
only xk is relaxed during retrieval, we get:

Q−1(xk − x̄k)−Q−1SkmS−1
mm(xm − x̄m) = 0 (11)

which immediately gives us the retrieval dynamics in Eq 6 by multiplying Q on both sides of the
equation and rearrange.

Now we show that the retrieval of the implicit model also follows Eq 6 at the convergence of inference.
Setting Eq 5 to 0 gives us εεε = x−Wx− ννν = 0, since W is a zero-diagonal matrix and thus cannot
be equal to I . Splitting it into blocks corresponding to xk and xm we have:[

Wkk Wkm

Wmk Wmm

] [
xk

xm

]
+

[
νννk
νννm

]
=

[
xk

xm

]
(12)

Since we only perform inference on the top k corrupted entries in x, we have:

Wkkxk +Wkmxm + νννk = xk ⇒ (Ikk −Wkk)xk = Wkmxm + νννk (13)

We now investigate the parameter values in the above equation. Notice that we assumed the
convergence of parameter learning at the time of retrieval, which gives us ννν = (I − W )x̄ and
[(I −W )S]diag=0 = 0. By splitting the first equation into blocks we have:

νννk = (Ikk −Wkk)x̄k −Wkmx̄m (14)

Substituting the νννk in Eq 13 with this relationship we get:

Wkm(xm − x̄m) = (Ikk −Wkk)(xk − x̄k) (15)
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Notice that [(I −W )S]diag=0 = 0 connects the value of W and S, which can also be written into
the block matrix form:([

Wkk Wkm

Wmk Wmm

] [
Skk Skm

Smk Smm

]
−

[
Skk Skm

Smk Smm

])
diag=0

= 0 (16)

which gives us two useful relationships:

WkkSkm +WkmSmm = Skm ⇒ Wkm = (Ikk −Wkk)SkmS−1
mm (17)

(WkkSkk +WkmSmk − Skk)diag=0 = 0 (18)

Substituting the expression of Wkm in terms of Wkk into Eq 15 we have:

(Ikk −Wkk)SkmS−1
mm(xm − x̄m) = (Ikk −Wkk)(xk − x̄k) (19)

The above expression is already close to Eq 6 which we seek to prove, i.e. we could obtain Eq 6 by
cancelling Ikk −Wkk on both sides of Eq 19, hence we will now show that Ikk −Wkk is invertible.
To do it we first observe that according to Eq 18, WkkSkk +WkmSmk − Skk is a diagonal matrix,
which we call D. Therefore we have:

D = (Ikk −Wkk)Skk −WkmSmk

= (Ikk −Wkk)Skk − (Ikk −Wkk)SkmS−1
mmSmk

= (Ikk −Wkk)(Skk − SkmS−1
mmSmk)

= (Ikk −Wkk)Q

(20)

Since Q is the Schur complement of Smm in S, a sample covariance matrix that we assume to be
positive definite, it is also positive definite and thus invertible [22]. Therefore Ikk −Wkk = DQ−1.
Notice that since Wkk has all its diagonal elements equal to 0, the matrix DQ−1 must have 1’s on its
diagonal, which prevents the diagonal matrix D from having 0’s on its diagonal (for

(
DQ−1

)
ii
=

Dii

(
Q−1

)
ii
= 1, Dii cannot be 0). Therefore, D is also invertible, which makes Ikk − Wkk an

invertible matrix as well. This enables us to “cancel out" the Ikk −Wkk on both sides of Eq 19 and
establish the equivalence to the retrieval of the explicit covPCN (Eq 6).

Code availability Code to reproduce the experiments is available at:

https://github.com/C16Mftang/covariance-learning-PCNs
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