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Abstract

Short-term memory in standard, general-purpose, sequence-processing recurrent
neural networks (RNNs) is stored as activations of nodes or “neurons.” Generalising
feedforward NNs (FNNs) to such RNNs is mathematically straightforward and
natural, and even historical: already in 1943, McCulloch and Pitts proposed this as a
surrogate to “synaptic modifications” (in effect, generalising the Lenz-Ising model,
the first non-sequence processing RNN architecture of the 1920s). A lesser known
alternative approach to storing short-term memory in “synaptic connections”—by
parameterising and controlling the dynamics of a context-sensitive time-varying
weight matrix through another NN—yields another “natural” type of short-term
memory in sequence processing NNs: the Fast Weight Programmers (FWPs) of
the early 1990s. FWPs have seen a recent revival as generic sequence processors,
achieving competitive performance across various tasks. They are formally closely
related to the now popular Transformers. Here we present them in the context
of artificial NNs as an abstraction of biological NNs—a perspective that has not
been stressed enough in previous FWP work. We first review aspects of FWPs
for pedagogical purposes, then discuss connections to related works motivated by
insights from neuroscience.

1 Introduction

Memory is essential for problem solving in the natural world in which presently available information
may become important later. In the context of artificial neural networks (NNs), we may distinguish
two major categories of memory: long-term (LTM) and short-term memory (STM). For example,
a supervised feedforward NN (FNN) learning to solve some prediction task first sees a sequence of
(batches of) training examples, then test examples. During the training phase, its weight matrix (WM)
is iteratively modified by some learning algorithm to reduce the NN’s errors. In the conventional
setting, the WM is frozen once training ends, and becomes a permanent form of memory (LTM) re-
flecting its training experience, repeatedly used to make predictions about unseen test examples. This
LTM stored in the WM is the NN’s program, where the NN architecture is considered a computer [1].

When the world is only partially observable, problem-solving NNs generally need additional short-
term memory (STM), to temporally store information about previously observed inputs. STM is
typically specific to the current task, to be erased when the next task starts. A general and standard
sequence processing NN is the recurrent NN (RNN; [2, 3], see also older works reviewed in Sec. 3).
While the transition from an FNN to an RNN is straightforward (reviewed in Sec. 2.1), it is worth
noting the underlying decision of storing STM as activations of “neurons” while keeping the WM, i.e.,
the “synaptic connection weight strengths” fixed. Here our main goal is to shed light on an alternative
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way of introducing STM into the FNN: the Fast Weight Programmers (FWPs; [4, 5]) which learn to
store STM in synaptic connection weights.

2 Short-Term Memory in Sequence Processing Nets

2.1 Conventional Approach: Storing Short-Term Memory in Neurons

Before presenting the alternative memory type in Sec. 2.2, we first review “conventional” STM in
sequence processing NNs. In what follows, let din, dout, and t denote positive integers. We define a
layer of an NN as a function with a weight matrix W ∈ Rdout×din which transforms an input vector
xt ∈ Rdin to an output vector yt ∈ Rdout as

yt = σ(Wxt) (1)

where σ is an element-wise activation function. We omit the additive bias term without loss of
generality. This is indeed an abstraction for an NN where x and y represent the activities of input and
output “neurons” respectively, and the weight matrix W stores strengths of “synaptic connections”
between them.1 This system has no STM: when we feed another input xt+1 at the next time step t+1,
the previous input xt has no influence on the computation of output yt+1. This feedforward layer can
be straightforwardly extended through an STM by making the output yt at step t dependent on its own
output yt−1 from the previous time step t− 1 by introducing another weight matrix R ∈ Rdout×dout

yt = σ(Wxt +Ryt−1) (2)

This is a trivial and natural way of introducing STM to ANNs for sequence processing2. Essentially
we model the dynamics of the output neurons yt over time by another fictive NN with synaptic
connections R between “neurons at time t” and “neurons at time t − 1”. Since no such synaptic
connections over time exist physically, we may be implicitly giving up the analogy to biological NNs
here. It is also worth noting that, while Jordan [2] and Elman [3] propose this kind of recurrence
purely for the purpose of introducing temporal dependency, work by McCulloch and Pitts [6] in 1943
already proposed it as a replacement of modifiable synaptic connections—see “Theorem 7. Alterable
synapses can be replaced by circles.” Now what if we modelled the “alterable synapses” directly?
The alternative memory type presented in the next section represents an answer to this question.

2.2 Alternative Approach: Storing Short-Term Memory in Synaptic Connections

Restarting from Eq. 1, we now show how to introduce STM to FNNs by explicitly and rapidly
modifying the synaptic weights as a function of the inputs. The core idea is to control the mechanism
of synaptic weight changes by another learning NN. Similarly to the recurrent connections R
introduced in the standard RNN (Sec. 2.1), this NN may be “fictive” from the perspective of the
biological NN analogy. We present a bottom-up step-by-step construction as follows. Starting from
the goal, we want W to be parameterised as a function of the inputs, i.e., we want Wt−1 to become
Wt at each step t. This requires an update rule. For now, let us take a very simple update equation:

Wt = Wt−1 + vt ⊗ kt (3)

where ⊗ denotes outer product vt ⊗ kt ∈ Rdout×din between two vectors vt ∈ Rdout and kt ∈ Rdin .
This is a generic equation akin to Hebb’s informal learning rule [7] (kt is the input and vt the output
of this layer) as well as to the gradient descent update rule of the WM of a linear layer (kt as the
input and vt the gradient of the loss w.r.t. the linear layer’s output scaled by a negative learning rate).
Now, these newly introduced variables kt and vt have to be generated somehow. We can simply
generate them from the actual external input xt, i.e.,

[kt,vt] = Axt (4)

where A ∈ R(din+dout)×din is a weight matrix, and the square brackets denote vector concatenation.
Putting these operations in the right order yields a sequence processor that, just like the standard

1Generally speaking, the analogy never goes beyond this, and has limited (if any) practical implications or
benefits.

2See, e.g., Elman [3]’s simplification of Jordan [2]’s version featuring one more layer before the recurrence.
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RNN, transforms an input xt ∈ Rdin into an output yt ∈ Rdout at each time step t as follows

[kt,vt] = Axt (5)
Wt = Wt−1 + vt ⊗ kt (6)
yt = σ(Wtxt) (7)

Essentially, an NN with parameters A ∈ R(din+dout)×din translates the input observations into weight
changes through Eqs. 5-6. This effectively augments Eq. 1 of an FNN with STM that is stored in the
context-sensitive weight matrix Wt representing the dynamic synaptic weights. This idea is what was
introduced by Schmidhuber [4, 5] as “an alternative to recurrent nets”3. The original work presents
this model as a system of two networks: the network in Eq. 7 is the fast net, whose fast weights Wt

are modified at every time step by the slow net of Eq. 5 whose slow weights A are trained e.g, by
backpropagation through time. In the original paper [4, 5], the slow net is said to “control” the fast
weights (and thus, it is a “fast weight controller”), while recent works refer to it as a “Fast Weight
Programmer" (FWP) [8]; considering the WM as the program of an NN [1]. Modifying the WM in a
goal-oriented manner means programming the NN via fast weight changes.

Practical Enhancements. Two technical enhancements have improved FWPs in practice. Firstly,
Transformers with linearised self-attention [9, 10] have a “dual form” that is an outer product-based
FWP: exactly the same mathematical relation [11] maps the perceptron to its dual form, the kernel ma-
chine [12]. A practical implication is that FWPs can directly adopt advancements of architectural de-
signs originally developed for Transformers [13], as FWPs implement their (linearised) self-attention
layers. These designs include an additional query projection that generates the input to the fast net,
as well as the now standard two-layer feedforward blocks and layer normalisation. In fact, it is now
also common to use the associative memory terminology “key/value” to describe FWPs (as reflected
in the notations kt and vt above), rather than the original “FROM/TO” terminology of the 1990s.

The second kind of enhancement is an improved update rule. While the “purely additive” update rule
of Eq. 3 is the one used in the standard Linear Transformer [9], Schlag et al. [8] identify its memory
capacity problem and proposes to replace it by the delta learning rule [14, 15], which has been shown
to consistently outperform the purely additive one on various tasks including language modelling [8],
algorithmic tasks [16], time series prediction [17], image generation [18], and video game playing in
reinforcement learning [16].

Properties. The incremental/additive nature of STM updates in FWPs (Eq. 6) yields interesting
properties that the standard RNN does not have. Firstly, it provides good gradient flow [19] and
alleviates the fundamental vanishing gradient problem [20] of sequence learning through gradient
descent. Second, unlike in standard RNNs, the weight update equation (e.g., Eq. 6) can be directly
seen as an Euler discretisation of its continuous-time counterpart. This can be exploited to derive a
powerful Neural-ODE/CDE based sequence processors for the continuous-time domain [17].

Another important property not shared by standard RNNs is the number of temporal variables, one
of the original motivations of FWPs [21]. Assuming d = din = dout, FWPs store O(d2) memory
instead of O(d) in the case of RNNs. While this may increase the memory storage, it also increases
the space complexity of FWPs trained by backpropagation through time. A naive implementation
has a space complexity of O(Td2) where T is the number of backpropagation steps. Fortunately, the
incremental/additive nature of memory allows for deriving memory-efficient backpropagation that
reduces this complexity to O(d2) (see e.g., [9, 8, 22]), allowing for scaling up practical applications.

Other Extensions. There is no reason to restrict the STM storage to either “neurons” or “synaptic
weights.” We can use both: one can parameterise weight matrices in the standard RNN (Eq. 2) as a
function of inputs using the FWP principle of Sec. 2.2. Alternatively, one can also introduce recurrent
connections to the FWP that connect activations of the fast net from the previous time step to the
input of the slow net. These hybrid approaches [16] have been shown to improve over other FWPs
without recurrence on various tasks.

Another natural extension is to make all weights context-dependent, including the slow weights in
the FWP themselves. Such a model can be obtained with minor modifications to Eqs. 5-7 [22]. These

3Up to slight changes introduced for pedagogical purposes: we placed an activation function in Eq. 7 instead
of Eq. 6 to facilitate direct comparison to the original FNN of Eq. 1.
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self-referential variants [23, 24, 25] allow an explicit formulation of recursive self-modifications in
artificial NNs, another interesting perspective directly derived from the FWP principle.

3 Relating to Works Motivated by Neuroscience

The importance of rapidly changing NN weights was first explicitly emphasised by von der Malsburg
[26], then also by other authors Feldman [27], Hinton and Plaut [28]. The parameterisation and control
of synapses through another NN, however, was introduced only in the early 1990s by Schmidhuber
[4, 5]. There are also several rather recent works motivated by insights from neuroscience to improve
“synapses” in artificial NNs. For example, Lahiri and Ganguli [29] and Zenke et al. [30] question the
single-scalar parameterisation of synapses in artificial NNs in light of the complexity of biological
synapses. The core idea of FWPs directly relates to this spirit, as FWPs parameterise synapses by a
general purpose NN that can potentially control any complex dynamics. The models of Miconi et al.
[31, 32] motivated by synaptic plasticity in the brain (see also [33]) are FWP variants where plasticity
is introduced as augmentation to some base RNN (in the spirit of the “hybrid approaches” mentioned
above in Sec. 2.2 “Other Extensions”). Here we stress that such synaptic weight modifications can be
a stand-alone mechanism for STM. In machine learning, dynamic synapses are also motivated by
applications in meta-learning (e.g., [34, 35, 36, 37, 38]) and continual learning (e.g., [30, 39, 40]).

The work of Whittington et al. [41] implicitly relates a model of hippocampal formation (Tolman-
Eichenbaum Machine; TEM [42]) to Transformers without softmax in self-attention, which relate
to the so-called Linear Transformers [9], which are FWPs [8]. Specifically, TEM (simplified with
some reasonable assumptions [41]) is an auto-regressive sequence processor that, at each time
step t > 0, estimates the next sensory input yt ∈ Rdin as a function of the current sensory input
xt ∈ Rdin , the action represented by an integer at, and the positional representation gt ∈ Rdpos (where
dpos is a positive integer) corresponding to activities of “grid cells” (or “medial entorhical cells”).
gt is parameterised by an RNN without external inputs, with an action-dependent weight matrix
Wat

= f(at) ∈ Rdpos×dpos where f is a parameterised feedforward NN as follows:4

gt = σ(Wat
gt−1) (8)

yt = αXtG
⊺
t gt (9)

where Xt ∈ Rdin×t and Gt ∈ Rdpos×t are matrices constructed by concatenating the corresponding
vectors from the previous steps, i.e., Xt = [x1, ...,xt] and Gt = [g1, ..., gt], and α ∈ R. Clearly, this
computation can be expressed as an NN (linear layer) with context-dependent synaptic connections
Wt ∈ Rdin×dpos (with W0 = 0) that evolve over time in FWP fashion as follows:

Wt = αXtG
⊺
t = Wt−1 + αxt ⊗ gt (10)

yt = Wtgt (11)
Unlike in the original formulation of TEM, the activities of “place cells” do not directly appear in
this FWP formulation (they are hidden in the computation of dynamic synaptic connection weights).
We also note that this connection is not surprising, since the motivation of TEM [42] (“structural
generalisation”) is a form of systematic generalisation [43], and FWPs relate to tensor product
representations that are popular in the context of systematic generalisation [44, 45].

The general principle of storing patterns in LTM based on changing synaptic connections is a much
older concept already found in non-learning (and non-sequence processing) RNNs. In the 1970s
Amari [46] extended the Ising or Lenz-Ising model introduced in the 1920s [47, 48, 49, 50, 51]
(where a binary neuron is analogous to a spin), by making it adaptive and thus capable of learning
associations of input/output patterns by changing the connection weights. This precedes the work
of Little [52] and Hopfield [53] (see also [54]) on what has been called the "Hopfield Network" or
Amari-Hopfield Network [55] that has also been recently revisited [56, 57, 58]. Amari [46] even
discusses the sequence processing scenario.

As mentioned above, the principles of standard RNNs were also discussed by neuroscientists McCul-
loch and Pitts [6] in 1943, and analysed by Kleene et al. [59] in the 1950s. Turing [60]’s unpublished
“unorganized machines” of 1948 also relate to RNNs.

4We introduce two notational changes compared to Whittington et al. [41]. First, for consistency with the rest
of this paper, we use column-major vectors. Second, for clarity, we introduce time indices to all variables. We
also omit many projection layers including extra layer after yt as well as some additional residual connections
that are in the official implementation.
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4 Conclusion

We discussed Fast Weight Programmers (FWPs) as an alternative to standard RNNs or to McCulloch
and Pitts’ model with “cycles” that replace “alterable synapses” (see their informal Theorem 7).
This interesting perspective has not been stressed much in previous work on FWPs. While the exact
role of synaptic plasticity on memory in the brain remains unclear (see ongoing discussions of this
topic in neuroscience, e.g., [61, 62]), we saw how compactly and elegantly FWPs can implement the
learnable dynamics of short-term memory in time-varying synaptic connections of artificial NNs.
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