
Constructing compressed number lines of latent
variables using a cognitive model of memory and deep

neural networks

Sahaj Singh Maini1, James Mochizuki-Freeman1, Chirag Shankar Indi1,
Brandon G. Jacques2, Per B. Sederberg2, Marc W. Howard3, Zoran Tiganj1

1{sahmaini, jmochizu, chshan, ztiganj}@iu.edu
Department of Computer Science, Indiana University Bloomington

2{bgj5hk, pbs5u}@virginia.edu
Department of Psychology, University of Virginia

3marc777@bu.edu
Department of Psychological and Brain Sciences, Boston University

Abstract

Humans use log-compressed number lines to represent different quantities, includ-
ing elapsed time, traveled distance, numerosity, sound frequency, etc. Inspired by
recent cognitive science and computational neuroscience work, we developed a
neural network that learns to construct log-compressed number lines from a cogni-
tive model of working memory. The network computes a discrete approximation of
a real-domain Laplace transform using an RNN with analytically derived weights
giving rise to a log-compressed timeline of the past. The network learns to extract
latent variables from the input and uses them for global modulation of the recurrent
weights turning a timeline into a number line over relevant dimensions. The number
line representation greatly simplifies learning on a set of problems that require
learning associations in different spaces – problems that humans can typically
solve easily. This approach illustrates how combining deep learning with cognitive
models can result in systems that learn to represent latent variables in a brain-like
manner and exhibit human-like behavior manifested through Weber-Fechner law.

1 Introduction

The human ability to map sensory inputs onto number lines is critical for rapid learning, reasoning,
and generalizing. Recordings of activity from individual neurons in mammalian brains suggest a
particular form of representation that could give rise to mental number lines over different variables.
For instance, the presentation of a salient stimulus to an animal triggers sequential activation of
neurons called time cells which are characterized by temporally tuned unimodal basis functions
[14, 22, 7]. Each time cell reaches its peak activity at a particular time after the onset of the stimulus.
Together, a population of time cells constitutes a temporal number line or a timeline of the stimulus
history [12, 23]. Similarly, as animals navigate spatial environments neurons called place cells
exhibit spatially tuned unimodal basis functions [16]. A population of place cells constitutes a spatial
number line that can be used for navigation [3, 2]. The same computational strategy seems to be used
to represent other variables as well, including numerosity [17], integrated evidence [15], pitch of
tones [1], and conjunctions of these variables [18]. Critically, many of these “neural number lines”
appear to be log-compressed [4, 17], providing a natural account of the Weber-Fechner law observed
in psychophysics [5, 8]. Here we present a method by which deep neural networks can construct
continuous, log-compressed number lines of latent task-relevant dimensions.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



a b c

Figure 1: a. The impulse response of the Laplace transform approximation decays exponentially with
a decay rate s. The impulse response of the inverse Laplace transform approximation has a unimodal
form such that each curve peaks at

∗
τ . Note that if time t was shown on the log-scale, the unimodal

curves would be equally wide and equidistant. b. α modulates the decay rate of Fs;t. When α = 0,
Fs;t is constant since its time derivative is 0. When α = 0.5 the decay of Fs;t is slowed down by a
factor of 2 (see also Fig. A1). c. Schematic of the CNL network with input fa and modulatory inputs.
Modulatory inputs are passed through a trainable dense layer and modulate the recurrent weights.
The network has a single prediction output which is trained to predict the activity of target fb.

Inspired by experiments on animals, we conduct experiments where a neural network learns number
lines for spatial distance and count of objects appearing over time. We designed an experimental
setup where the network needs to predict when a target event will happen. In our experiments, time
to the target event depends either on traveled spatial distance, or the count of how many times some
object appears in the input. Critically, just like in experiments with animals, these variables are not
directly observable from the inputs – they are hidden and have to be learned from the spatiotemporal
dynamics of the input.

Building on models from computational and cognitive neuroscience [21, 11, 13], we propose a neural
network architecture that gives rise to a number line supported by unimodal basis functions. The input
is fed into a recurrent layer with the weights analytically computed to approximate the real-domain
Laplace transform of the input. Critically, we use properties of the Laplace domain and apply global
modulation to the recurrent weights to convert functions of time into functions of other variables,
such as distance or count.

2 Methods

We first express a modified version of the Laplace transform F (s; t) of f(t) in a differential form:
dF (s;t)

dt = −sF (s; t) + f(t). This modified version differs from the standard Laplace transform only
in variable s: instead of s being a complex number, we use real and positive s.

We define a time derivative of x(t) as α(t) = dx
dt and modify Eq. (2) such that α(t) modulates the

decay rate s via the chain rule giving rise to the Laplace transform of f(x(t)), F (s;x):

dF (s; t)

dt
= −α(t)sF (s; t) + f(t) −→ dF (s;x)

dx
= −sF (s;x) + f(x). (1)

The inverse Laplace transform which we denote as f̃(
∗
τ ; t) can be computed using the Post inversion

formula [19]: f̃(
∗
τ ; t) = L−1

k F (s; t) = (−1)k

k! sk+1 dk

dsk
F (s; t) where

∗
τ := k/s and k → ∞. See

Fig. 1 and Fig. A1 for illustration of how f̃(
∗
τ ; t) constitutes a Compressed Number Line (CNL). In

the rest of the paper, we refer to our approach as CNL.

We constructed an approximation of the modified Laplace and inverse Laplace transform as a two-
layer neural network with analytically computed weights and log-spaced

∗
τ (Fig. 1c). The first layer

implements the modified Laplace transform through an RNN. The second layer implements the
inverse Laplace transform as a dense layer with weights analytically computed to implement k-th
order derivative with respect to s (see Appendix Sec. A.1 for details on discretization).

2



To convert a log-compressed timeline into a log-compressed number line, we implemented global
modulation of recurrent weights as in Eq. (1). We assume that α is not known and that it needs to
be learned from the input data. α(t) is computed through a feedforward projection which receives a
subset of inputs designated as modulatory inputs (e.g., inputs from which a latent variable, such as
velocity or count, can be computed). We feed f̃∗

τ ;t
into a trainable dense layer with a single output

and a sigmoid activation function.

3 Results

We tested the proposed network on two event prediction experiments. Event a predicted event b such
that the time between them depends on either traveled distance with velocity as a latent variable
which can be learned as a combination of the inputs (Experiment 1) or the number of occurrences of a
specific pattern (Experiment 2). Our goal was to demonstrate that the proposed network can identify
latent variables by learning an appropriate mapping from inputs onto a global modulatory signal α.

CNL parameters were kept the same for all the experiments. We set k = 8 and we used 64 neurons
in F and 50 neurons in f̃ with input fa. The number of neurons in f̃ was smaller than in F in order
to avoid edge effects when taking a derivative with respect to s (the number of units in f̃ is 2k less
than the number of units in F ; see Appendix Sec. A.2 for details on the computation of the discrete
approximation of the derivative).

∗
τ was composed of 50 log-spaced values between 5 and 20000.

These lower and upper limits were chosen to cover the entire range of temporal relationships in the
input signal. The output of f̃ layer was fed through trainable weights into a single output neuron with
a sigmoid activation function.

To evaluate how commonly used RNNs perform on this task we compared CNL with a simple RNN,
Gated Recurrent Units (GRU) [6], Long Short-Term Memory (LSTM) [9, 10], Lagrange Memory
Unit (LMU) [24], and Coupled Oscillatory RNN (coRNN) [20] each followed by a fully connected
layer. For LMU we experimented with hyperparameters and got the best performance with: dt = 1,
θ = 5000 and d = 128. For coRNN we set the hyperparameters to the same values as in Rusch and
Mishra [20]: dt = 0.016, γ = 94.5 and ϵ = 9.5. The hidden size was 64 in all cases. To investigate
the importance of the inverse Laplace transform, we also compared CNL (which is composed of the
Laplace and inverse Laplace transform) with F (s) (only the Laplace transform, without the inverse)
combined with a trainable dense layer of 50 neurons. We label the later model as CNL-F.

3.1 Experiment 1: Predicting distance in the presence of modulatory inputs

In this experiment input fa predicts input fb, but the time between them was modulated by other
inputs, fc and fd (see Fig. A2 for an illustration of the experiment). For the CNL network, this
meant that it had to learn that α = w1fc +w2fd, where w1 and w2 were randomly generated weights
between 0 and 1 and fc and fd had a magnitude ranging from 0 to 5. The network only observed fc
and fd and not the weights w1 and w2, so it had to learn the relationship between α and fc and fd.
We can view this problem as one of learning spatial distance between event a and event b such that
velocity (in this case α(t)) is not directly observable but has to be learned from the modulatory inputs
fc and fd. Therefore, a does not predict b after a particular amount of time has elapsed, but instead
after traveling a particular distance at a velocity that has to be learned from the network inputs. In
the absence of modulatory inputs fa(t) = δ(x) and fb(t) = δ(x + x′) with x′ ∈ [50, 500, 5000].
Modulatory inputs fc and fd were stepwise functions broken into 15 pieces, with the amplitude of
each piece between 0 and 10. The two modulatory inputs were passed through a set of weights Wα

(one weight for each modulatory input), adding two more parameters to CNL.

We constructed 6 training, 22 validation, and 22 test examples. The error was quantified as binary
cross-entropy loss in predicting fb(t). Results from Experiment 2 are given in Table 1 (average
distance) and Table A1 (cross-entropy loss). Despite having much fewer parameters, CNL performed
better than the other approaches at all timescales. We attribute this to the ability of CNL to learn α
and construct a number line and then simply learn which component on the number line corresponds
to the target. This is a simple associative task. From observing plots in Fig. A4 we see that other
approaches failed to provide a useful prediction.

3



x’=50 x’=500 x’=5000 Params
CNL-F 29.7 ± 14.5 354.0 ± 0.0 8546.1 ± 9514.7 53
CNL 2.4 ± 0.7 35.2 ± 5.2 433.4 ± 118.1 53
RNN 57.7 ± 22.1 735.2 ± 139.3 6783.5 ± 3448.6 4481

LSTM 55.9 ± 8.7 607.1 ± 50.6 8200.2 ± 3628.6 17729
GRU 62.2 ± 13.7 592.8 ± 90.9 5293.3 ± 1597.3 13313

coRNN 49.9 ± 10.7 568.1 ± 57.4 5553.4 ± 913.9 8513
LMU 47.9 ± 31.4 778.3 ± 128.8 7884.5 ± 2141.8 12740

Table 1: Experiment 1: The average distance between the actual timestamp of the target event and the
timestamp that received the highest probability estimate.

count=10 count=200 Params
Loss Distance Loss Distance

CNL-F 0.469 ± 0.249 24.2 ± 53.1 0.085 ± 0.001 1005.0 ± 0.0 196
CNL 0.201 ± 0.036 1.3 ± 0.4 0.077 ± 0.004 75.8 ± 21.5 196
RNN 0.323 ± 0.076 69.8 ± 24.5 0.108 ± 0.023 1365.1 ± 421.1 5377

LSTM 0.303 ± 0.140 62.0 ± 14.2 0.096 ± 0.010 1264.4 ± 941.1 21313
GRU 0.324 ± 0.119 28.8 ± 1.7 0.116 ± 0.072 629.0 ± 1006.0 16001

coRNN 0.636 ± 0.117 60.8 ± 25.3 0.093 ± 0.000 1619.3 ± 0.0 9409
LMU 0.402 ± 0.297 65.5 ± 87.8 0.146 ± 0.135 597.7 ± 781.4 13650

Table 2: Experiment 2: Binary cross-entropy loss across different scales and the average distance be-
tween the actual timestamp of the target event and the timestamp that received the highest probability
estimate.

3.2 Experiment 2: Counting

In Experiment 2, the time between a and b was modulated by the number of specific patterns presented
as modulatory inputs (Fig. A3). At each time step, a pattern composed of 16 elements with binary
values was presented. One of the patterns, which we refer to as the target pattern, was repeated
multiple times and the network had to learn that the time between a and b depends on the number of
target patterns. The patterns were generated randomly.

To solve this task, the network had to learn to recognize the target pattern and count its repetitions.
In this case, α had to be learned as a temporal derivative of the count. Whenever the target pattern
appears, the count changes by one, therefore α = 1. Whenever the pattern was not the target pattern,
the count stays the same and α = 0. Fig. A1d shows an illustration of this, assuming that the network
has learned appropriate α.

We conducted the experiment at two different scales, one with 10 target counts and one with 200
target counts. In the first case, the input signal had 200 time steps, and in the second case, it had
2000 time steps. The results are shown in Table 2. At both scales, CNL performed better than the
other approaches, demonstrating that it learned the temporal derivative and constructed a number line
representing the count of the target pattern. Fig. A5 shows prediction results for each of the seven
networks.

4 Discussion

Cognitive models provide immense utility in understanding neural computations in the brain, but
they are usually limited to handcrafted features and associative learning. Here we have shown that
incorporating cognitive models into neural networks can expand the utility and explanatory power of
these models. CNL can take advantage of deep learning and learn latent features while at the same
time utilizing the benefits of the cognitive model and structured representation of knowledge which
allows easy associative learning. Activity patterns of neurons in the proposed network resemble
the activity of neurons recorded in mammalian brains. Fig. A1 shows time cells, place cells (in 1D
environment) and cells tuned to a particular number of objects. Each of these cell types has been
recorded in mammalian hippocampus [3, 14, 15] illustrating how cognitive models embedded in deep
networks can generate useful neural predictions.

4



Acknowledgment

We gratefully acknowledge support from the Defense Advanced Research Projects Agency (DARPA) under
project Time-Aware Machine Intelligence (TAMI) and the National Institutes of Health’s National Institute on
Aging, grant 5R01AG076198-02. This content is solely the responsibility of the authors and does not necessarily
represent the official views of DARPA or the National Institutes of Health’s National Institute on Aging. This
research was supported in part by Lilly Endowment, Inc., through its support for the Indiana University Pervasive
Technology Institute.

References
[1] D. Aronov, R. Nevers, and D. W. Tank. Mapping of a non-spatial dimension by the hippocampal-entorhinal

circuit. Nature, 543(7647):719–722, 2017. doi: 10.1038/nature21692.

[2] A. Banino, C. Barry, B. Uria, C. Blundell, T. Lillicrap, P. Mirowski, A. Pritzel, M. J. Chadwick, T. Degris,
J. Modayil, et al. Vector-based navigation using grid-like representations in artificial agents. Nature, 557
(7705):429–433, 2018.

[3] J. Bures, A. Fenton, Y. Kaminsky, and L. Zinyuk. Place cells and place navigation. Proceedings of the
National Academy of Sciences, 94(1):343–350, 1997.

[4] R. Cao, J. H. Bladon, S. J. Charczynski, M. E. Hasselmo, and M. W. Howard. Internally generated time in
the rodent hippocampus is logarithmically compressed. bioRxiv, 2021.

[5] N. Chater and G. D. A. Brown. From universal laws of cognition to specific cognitive models. Cognitive
Science, 32(1):36–67, 2008. doi: 10.1080/03640210701801941.

[6] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio. Empirical evaluation of gated recurrent neural networks on
sequence modeling. arXiv preprint arXiv:1412.3555, 2014.

[7] H. Eichenbaum. Time cells in the hippocampus: a new dimension for mapping memories. Nature Reviews
Neuroscience, 15(11):732–44, 2014. doi: 10.1038/nrn3827.

[8] G. Fechner. Elements of Psychophysics. Vol. I. Houghton Mifflin, 1860/1912.

[9] K. Greff, R. K. Srivastava, J. Koutník, B. R. Steunebrink, and J. Schmidhuber. Lstm: A search space
odyssey. IEEE transactions on neural networks and learning systems, 28(10):2222–2232, 2016.

[10] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation, 9(8):1735–1780, 1997.

[11] M. W. Howard, C. J. MacDonald, Z. Tiganj, K. H. Shankar, Q. Du, M. E. Hasselmo, and H. Eichenbaum. A
unified mathematical framework for coding time, space, and sequences in the hippocampal region. Journal
of Neuroscience, 34(13):4692–707, 2014. doi: 10.1523/JNEUROSCI.5808-12.2014.

[12] M. W. Howard, K. H. Shankar, W. Aue, and A. H. Criss. A distributed representation of internal time.
Psychological Review, 122(1):24–53, 2015.

[13] M. W. Howard, A. Luzardo, and Z. Tiganj. Evidence accumulation in a laplace domain decision space.
Computational brain & behavior, 1(3):237–251, 2018.

[14] C. J. MacDonald, K. Q. Lepage, U. T. Eden, and H. Eichenbaum. Hippocampal “time cells” bridge the gap
in memory for discontiguous events. Neuron, 71(4):737–749, 2011.

[15] A. S. Morcos and C. D. Harvey. History-dependent variability in population dynamics during evidence
accumulation in cortex. Nature Neuroscience, 19(12):1672–1681, 2016.

[16] E. I. Moser, E. Kropff, and M.-B. Moser. Place cells, grid cells, and the brain’s spatial representation
system. Annu. Rev. Neurosci., 31:69–89, 2008.

[17] A. Nieder and E. K. Miller. Coding of cognitive magnitude: compressed scaling of numerical information
in the primate prefrontal cortex. Neuron, 37(1):149–57, 2003.

[18] E. H. Nieh, M. Schottdorf, N. W. Freeman, R. J. Low, S. Lewallen, S. A. Koay, L. Pinto, J. L. Gauthier,
C. D. Brody, and D. W. Tank. Geometry of abstract learned knowledge in the hippocampus. Nature, pages
1–5, 2021.

[19] E. Post. Generalized differentiation. Transactions of the American Mathematical Society, 32:723–781,
1930.

5



[20] T. K. Rusch and S. Mishra. Coupled oscillatory recurrent neural network (cornn): An accurate and
(gradient) stable architecture for learning long time dependencies. arXiv preprint arXiv:2010.00951, 2020.

[21] K. H. Shankar and M. W. Howard. A scale-invariant internal representation of time. Neural Computation,
24(1):134–193, 2012.

[22] Z. Tiganj, J. Kim, M. W. Jung, and M. W. Howard. Sequential firing codes for time in rodent mPFC.
Cerebral Cortex, 27:5663–5671, 2017.

[23] Z. Tiganj, J. A. Cromer, J. E. Roy, E. K. Miller, and M. W. Howard. Compressed timeline of recent
experience in monkey lPFC. Journal of Cognitive Neuroscience, 30:935–950, 2018.

[24] A. Voelker, I. Kajić, and C. Eliasmith. Legendre memory units: Continuous-time representation in recurrent
neural networks. Advances in neural information processing systems, 32, 2019.

6



A Appendix

A.1 Neural networks implementation of the Laplace and inverse Laplace transform with
global weight modulation

While in the Laplace domain s is a continuous variable, here we redefine s as N elements long vector. We can
now write a discrete-time approximation of Eq. (1) as an RNN with a diagonal connectivity matrix and a linear
activation function:

Fs;t = WFs;t−1 + ft, (2)

where W = diag(e−α(t)s∆t) is an N by N diagonal matrix. At every time step t, Fs;t is N elements long
vector. For brevity of the notations, we assume that the duration of a discrete-time step ∆t = 1.

Following f̃(
∗
τ ; t) = L−1

k F (s; t) = (−1)k

k!
sk+1 dk

dsk
F (s; t), a discrete approximation of the inverse Laplace

transform, f̃∗
τ ;t

, can be implemented as a dense layer on top of Fs;t. The connectivity matrix of the dense layer

is L−1
k (see Appendix Sec. A.2 for the derivation of the exact matrix form of L−1

k ).

To interpret f̃∗
τ ;t

and to select values s in an informed way, we compute the impulse response of f̃∗
τ ;t

. For input

f(t) = δ(0), the activity of f̃∗
τ ;t

is:

f̃∗
τ ;t

=
1

u(t)

kk+1

k!

(
u(t)

∗
τ

)k+1

e
−k

u(t)
∗
τ , (3)

where u(t = tn) =
∑tn

i=0 α(ti). If α(0 ≤ t < tn) = 1, then u(t = tn) = tn. To investigate properties of
this approximation and to motivate our choice for

∗
τ and consequently s, we analyze the case where α(0 ≤ t ≤

tn) = 1.

The impulse responses of units in f̃∗
τ ;t

is a set of unimodal basis functions (Fig. 1a and Fig. A1a). To better
characterize its properties we first find the peak time by taking a partial derivative with respect to t, equate it
with 0 and solve for t: ∂f̃∗

τ ;t
/∂t = 0 → t =

∗
τ . Therefore each unit in f̃∗

τ ;t
peaks at

∗
τ . Note that if we computed

the exact continuous-time Laplace and inverse Laplace transform (which would require infinitely many neurons,
since s and

∗
τ would be continuous variables), the impulse response would be a δ(

∗
τ). This would provide a

perfect reconstruction of the input function f(0 < t′ < t) rather than its approximation.

To further characterize our approximation, we express the width of the unimodal basis functions of the impulse
response of f̃∗

τ ;t
through the coefficient of variation c (see Appendix Sec. A.3 for the derivation of c): c =

1/
√
k + 1. Importantly, c does not depend on t and

∗
τ , implying that the width of the unimodal basis functions

increases linearly with their peak time. Therefore when observed as a function of log(t), the width of the
unimodal basis functions is constant. Note that this property is critical for log-compression.

We choose values of
∗
τ as log-spaced between some minimum and maximum (see Results section for the values

used in the experiments). Because of the log-spacing and because c does not depend on t and
∗
τ , when analyzed

as a function of log(t), the unimodal basis functions are equidistant and equally wide, providing uniform support
over log(t) axis. This result is analogous to the scale-invariance observed in human timing and perception,
formalized as the Weber-Fechner law. Intuitively, this is beneficial since the more recent past carries more
predictive power than the more distant past. Hence, our approximation of function f(0 < t′ < t) will be better
for values closer to t than to 0. Note that fixing the values of

∗
τ and choosing k also fixes values of s since

s = k/
∗
τ so s is not a trainable parameter.

A.2 Derivation of the connectivity matrix for the inverse Laplace transform

The inverse Laplace transform is performed using the Post inversion formula [19]:

f̃(
∗
τ ; t) = L−1

k F (s; t) =
(−1)k

k!
sk+1 dk

dsk
F (s; t),

where
∗
τ := k/s. To implement this equation in a neural network we construct a discrete approximation for dk

dsk
.

First we compute N by N linear operator D which approximates the first order derivative: d
ds

(Alg. 2) and then

raise D to power k to implement k-th order derivative: Dk ≈ dk

dsk
.

7



Algorithm 1 Constructing N by N linear operator D which approximates the first order discrete
derivative.
D ← zeros(N,N)

for i← 1 to N − 1 do
D[i, i− 1]← − s[i+1]−s[i]

(s[i]−s[i−1])(s[i+1]−s[i−1])

D[i, i]←
s[i+1]−s[i]
s[i]−s[i−1]

− s[i]−s[i−1]
s[i+1]−s[i]

s[i+1]−s[i−1]

D[i, i+ 1]← s[i]−s[i−1]
(s[i+1]−s[i])(s[i+1]−s[i−1])

end for

A.3 Computing coefficient of variation of f̃

f̃ has a unimodal impulse response with peak at t =
∗
τ . The coefficient of variation, c, is a ratio of standard

deviation and mean. The mean of f̃ is:

µ =

∫ ∞

0

tf̃(s; t)dt

=

∫ ∞

0

t
1

t

kk+1

k!

(
t
∗
τ

)k+1

e
−k t

∗
τ dt

=
kk+1

k!

∫ ∞

0

(
t
∗
τ

)k+1

e
−k t

∗
τ dt

=
∗
τ
k + 1

k
.

The standard deviation of f̃ is:

σ =

√∫ ∞

0

(t− µ)2f̃(s; t)dt

=

√∫ ∞

0

(t− µ)2
1

t

kk+1

k!

(
t
∗
τ

)k+1

e
−k t

∗
τ dt

=
∗
τ

√
k + 1

k
.

Finally, the coefficient of variation is then:

c =
σ

µ
=

1√
k + 1

.

The coefficient of variation depends only on k. Therefore the variance grows with the peak time. In other words,
variance is constant as a function of the logarithm of the peak time.

8



A.4 Visualizaion of neural dynamics in CNL

a b c d

Figure A1: Neural dynamics with and without modulatory inputs. Delta pulse in fa predicts a
delta pulse in fb. a No temporal modulation (e.g., α = 1). b and c When the modulatory signal
corresponds to velocity (Experiment 1), the network represents traveled distance as manifested by
units that activate sequentially as a function of distance (bottom row). d Temporal modulation with
delta pulses (Experiment 2). The network represents the total count of presented pulses.

9



A.5 Illustration of Experiment 1

a b

∫ "#$

∫ #$

∫ %!#$

∫ %"#$
∫ "#$

Figure A2: Illustration of predicting distance by learning latent modulatory inputs, as highlighted
in Experiment 1. a. Let us assume that we want to estimate traveled distance from location A to
location B. If we integrate time steps while traveling from A to B (x axis) then the estimate would not
be accurate (broad distribution shown in blue) since our velocity changes during the trip. However, if
we integrate velocity (y axis) then the estimate would be more accurate (narrow distribution shown in
blue) and subject only to error in the velocity estimate itself. b. If velocity is not directly observable, it
needs to be estimated as a combination of observable inputs, fc and fd as in Example 1 (for example,
perhaps we are riding a bicycle and only observe motor outputs and sensory inputs - those would
correspond to fc and fd here). If we use only fc or fd, our estimate of traveled distance will not be
accurate (broad distributions shown in blue). However if we find a correct combination of fc and
fd (in this simple illustration that is fc + fd) then the velocity estimate is more accurate (narrow
distribution shown in blue) and subject again only to error in the velocity estimate itself.

Figure A3: Example output from the Counting dataset used in Experiment 2 (duration and size of
the pattern are shortened for illustrative purposes). Input Data columns represent modulatory inputs,
and rows represent time steps. In this example, the five rows highlighted in blue contain the target
pattern, with the red portions being the target pattern itself. The target number of pattern occurrences
is 3, corresponding to the number of patterns between the signal to start counting "S" (fed into the
network as fa) and the hidden target "T".

10



A.6 Binary cross-entropy loss in Experiment 1

x’=50 x’=500 x’=5000 Params
CNL-F 0.537 ± 0.171 0.585 ± 0.006 0.633 ± 0.047 53
CNL 0.275 ± 0.007 0.277 ± 0.004 0.336 ± 0.018 53
RNN 0.578 ± 0.489 0.574 ± 0.316 0.575 ± 0.157 4481

LSTM 0.637 ± 0.349 0.677 ± 0.179 0.617 ± 0.179 17729
GRU 0.653 ± 0.098 0.659 ± 0.131 0.594 ± 0.096 13313

coRNN 0.611 ± 0.093 0.593 ± 0.071 0.509 ± 0.019 8513
LMU 0.645 ± 0.161 0.592 ± 0.258 0.521 ± 0.350 12740

Table A1: Experiment 1: Binary cross-entropy loss across different scales.

11



A.7 Visualization of representative examples in each experiment

a b c d e f g
CNL-F CNL RNN LSTM GRU coRNN LMU

Figure A4: Experiment 1: Odd rows: representative examples of prediction (orange lines) for different
models. Input fa is shown in blue and target fb is in green. Even rows: Modulatory inputs fc and fd.
Plots are shown for three temporal scales. Top two rows: x′ = 50, third and fourth row: x′ = 500
and bottom two rows: x′ = 5000.

a b c d e f g
CNL-F CNL RNN LSTM GRU coRNN LMU

Figure A5: Experiment 2: Top row: representative examples of prediction (orange lines) for different
models. Input fa is shown in blue and target fb is in green. Plots are shown for two temporal scales.
Top row: fb = 1 after 10 counts, bottom row: fb = 1 after 200 counts.

12


	Introduction
	Methods
	Results
	Experiment 1: Predicting distance in the presence of modulatory inputs
	Experiment 2: Counting

	Discussion
	Appendix
	Neural networks implementation of the Laplace and inverse Laplace transform with global weight modulation
	Derivation of the connectivity matrix for the inverse Laplace transform
	Computing coefficient of variation of 
	Visualizaion of neural dynamics in CNL
	Illustration of Experiment 1
	Binary cross-entropy loss in Experiment 1
	Visualization of representative examples in each experiment


