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Abstract

A Differentiable Neural Computer (DNC)|Graves et al.|[2016] is a neural network
with an external memory which allows for iterative content modification via read,
write and delete operations. We show that information theoretic properties of the
memory contents play an important role in the performance of such architectures.
We introduce a novel concept of memory demon[[|to DNC architectures which
modifies the memory contents implicitly via additive input encoding. The goal of
the memory demon is to maximize the expected sum of mutual information of the
consecutive external memory contents.

Github codes |https://github.com/azarafrooz/dnc-with-demon|

1 Introduction

A Differentiable Neural Computer (DNC) |Graves et al.|[2016] is a neural network coupled to an
external memory matrix M € RV*W where W is the word/cell length and NN is the number of cells
and independent of the number of training parameters. Previous researches have shown external
memory matrix provide proper architectural bias for solving algorithmic and structured tasks.

The neural network in DNC is referred to as the ‘controller’. It interacts with the external world via
input ; € R and outputs y. But it also interacts with the memory matrix at each time step M, using
read and write heads to read from M, and to arrive at the next memory matrix M.

One main mechanism to allow for the interaction between heads and the memory is content-based
addressing. In this mechanism, a key vector is emitted by the controller as an approximation to a part
of the stored data which is then compared to memory M to yield the exact value. The comparison
metric is a cosine similarity score that determines weightings that should be used by the read headers
or by the write header to modify the memory content.

Keep memories interesting A technique common between Memory Champions is to assign inter-
esting imageries to the subjects of memorization, also known as the memory palace [Foer| [2012].
For example, a certain number is an interesting event or picture. Interesting imageries seem to
make the memorization/recall easier. Keeping memory associations interesting, seems to be an
efficient strategy to reduce the interference of current and past information and avoids the memory
contents to be overwritten or misinterpreted. Inspired by such a technique and in the context of
DNC, we setup a Reinforcement Learning (RL) framework where a RL agent is equipped with
a mutual information-based reward and an encoding action. Mutual information-based reward
I(M;; Myyq) = H(My) + H(My11) — H(M;, M) serves as a proxy to measure “interesting-
ness”. The intuition is that, if the DNC dynamics are “too simple”, then I will be small because
both entropy terms H(M;) and H(M;;,) are small. On the other hand, if the DNC dynamics
are “too random”, then I will be small because H(M;, M;11) ~ H(M;) + H(M;1). As a

'The name is inspired by the concept of Maxwell’s Demon who decreases the entropy of gas in a box by
letting all the high-velocity molecules accumulate on one side and all the low-velocity ones on the other.

NeurIPS 2022 Workshop On Memory in Artificial and Real Intelligence.



result, “interesting” non-randomness will exist only in the intermediate regime with high value of
I(My; M, 4). The RL agent action is to assign to each input embedding a proper encoding, akin to
assigning a certain imagery for each subject of memorization.

2 DNC with Memory demon

At each time step, demon modifies samples via continuous embedding a; ~ m(s;) which gets added
to the input data &; where s; = (xy, M;). As a result, the input of the controller is x; + a; which
leads to the writing the next memory content M. One can view a; as interestingness encoding
(rather than a positional encoding.) This iterative process is visualized in figure 1.

Demon then computes the mutual information of the consecutive memory contents I(My; M 1)
as its reward and updates its policy m in order maximize the expected sum of rewards
>t Eisvanmpe L (M Miia).

In order to estimate mutual information of consecutive memory contents, we utilize |Belghazi et al.
[2018]]. RL agent then uses this measure to guide its policy encoding actions using PPO |Schulman
et al. [2017]).
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Figure 1: Memory Demon encodes the observations with additive encodings a; and receives the
mutual information of the consecutive memory contents I (M;; My, 1) as reward.

3 Results

We refer to our architecture as Demon-DNC. The most important observation was that we found
out that Demon-DNC works best when combined with (key) masking techniques of |Csordas and;
Schmidhuber| [[2019]]. One known issue with content-based memory addressing is that the entire key
and cell values are being used to produce the similarity score. This can flatten the memory address
distribution when the unknown part of the cell values are more significant. The dynamic and high
variance nature of RL agent policies seem to exacerbate this situation which in turn makes the role of
masking more important.

To measure the efficacy of the Demon-DNC, we utilize the 3 following common tasks in the (Csordas
and Schmidhuber|[2019]]. Please refer to the description of such tasks to|Csordas and Schmidhuber
[2019] for a more comprehensive description.

3.1 Associated-recall and Copy task

Fig. 6 shows that Demo-DNC with masking is more efficient than the rest in both tasks. Although
the improvement (in terms of the convergence) seems to be more significant for the Associated-recall
task than for the copy task. Moreover, it shows the drops in the mutual information loss measures are
consistent with drop in the mean test errors. Networks that have lower mean test errors have also
lower mutual information loss, confirming our main assertion on the role of information theoretic
properties of the memory contents.
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Figure 6: Associative Recall and Repeat-Copy experiment over 10 seeds.

3.2 bAbi-10 task

We also conducted the bAbI experiments and the results are reported in Table[I] As it can be seen,
given the same number of training steps, not only Demon-DNC outperforms the best DNC network
in mean, it also outperform it in 9 tasks.

4 Shortcomming and future work

4.1 Comparing with some of the state of art

We also experimented on bAbi-1K. Since we found no available numbers on previous DNC-networks,
we only compare it with UT [Dehghani et al.] [2019] in Table 2]and Table 3] It can be seen that after
0.5M iterations, UT outperforms Demon-DNC. However, the full potential of external memories
might have not been explored fully. The idea of optimizing the information theoretic properties
of memory contents (with or without RL agents) for example might inspire other fresh ideas for
networks with external memory.

4.2 Scalability

One attractive properties of DNC is that number of parameters is independent of the number of
memory cells N. However, this is not true for the information estimator and RL networks. We are
exploring the feasibility of integrating our framework with Sparse DNC [2016] to address
this issue.



Table 1: 10K-bAbI error rates of different models after 0.5M iterations of training [%]

Task  DNC DNC-MDS DNC-DS DNC-MS DNC-MD DNC-MD-Demon
1 25+44 04+1.2 0.7+ 1.6 0.0+0.1 0.0+0.0 0.04+0.0

2 29.0£194 8.6+£10.1 18.6 +15.1 7.8£5.9 6.9 £4.7 1.54 4+ 0.57
3 32.3+£14.7 10.8+£9.5 169+13.0 7.9+7.8 124+5.1 834+0.81

4 0.8£1.5 0.8+£1.5 6.4+100 08+1.0 0.14+0.2 02+0.3

5 1.5£0.6 1.6£1.0 1.3£0.5 1.7£1.1 1.3£0.7 0.97 +0.17
6 5.2£6.8 1.1£21 24+3.8 0.0 £0.1 0.1+0.1 0.1+0.1

7 8.8+£5.8 3.4+23 7.6+5.1 25+2.0 3.0£5.0 1.24 +1.04
8 11.6+9.4 46+45 109+ 7.9 1.841.6 25+21 1.91+1.19

9 4.5+5.8 0.8£1.9 2.0+£3.3 01+0.2 0.1+£0.2 0.06 £ 0.06
10 9.1+11.5 2.6+39 41+£59 0.6 £0.6 0.5£0.5 0.33 £0.27
11 11.6+9.4 0.1£+0.1 0.1£0.2 0.0£0.0 0.0+0.0 0.0%+0.0

12 1.1£0.8 02402 05+04 0.3+04 0.2+0.2 0.03 4+ 0.07
13 1.1+0.8 0.1+0.1 0.2+0.2 0.2+0.2 0.14+0.1 0.16+0.34
14 248+225 80+£13.1 200194 18+09 20+1.6 1.97+0.73
15 408+14 26.3+20.7 42.1+6.3 33.0+£15.1 23.6+18.6 6.46 1 12.32
16 53.1+1.2 545+18 535+14 532423 539+12 53.28+2.18
17 37.8+25 399+32 40.1+20 41.2+3.0 398+1.2 39.14+1.89
18 7.0+3.0 6.3+4.1 9.4+0.9 3.3+22 2.0+2.6 1.67+1.64
19 67.6 £ 8.6 48.6 £32.8 67.6+7.9 48.1+26.7 40.7+34.9 14.08 4+ 2.87
20 0.0£0.0 09+£0.9 1.5£1.0 5.3+125 0.1+£0.1 0.06 £ 0.06
mean 16.9+5.2 11.0+ 3.8 153+ 3.5 1056£19 95£1.6 6.58 £0.73

Table 2: 1K-bADbI error rates of different models

Model Error
DNC-MD-Demon 9.98 (7/20)
Universal Transformer (UT)  8.50 (8/20)

Table 3: 1K-bAblI error rates of different models across tasks

Task  UT with dynamic halting DNC-MD-Demon
1 0.0 0.0

2 0.5 27.34
3 5.4 24.12
4 0.0 2.2

5 0.5 0.8

6 0.5 0.7

7 3.2 7.54

8 1.6 2.16
9 0.2 0.3

10 0.4 1.21
11 0.1 0.1
12 0.0 0.0
13 0.6 0.2
14 3.8 0.6
15 5.9 0.0
16 15.4 53.75
17 42.9 28.63
18 4.1 5.62
19 68.2 44.24
20 2.4 0.0




References

Ishmael Belghazi, Sai Rajeswar, A. Baratin, R. Devon Hjelm, and Aaron C. Courville. Mine: Mutual
information neural estimation. ArXiv, abs/1801.04062, 2018.

R. Csordés and J. Schmidhuber. Improving differentiable neural computers through memory masking,
de-allocation, and link distribution sharpness control. ArXiv, abs/1904.10278, 2019.

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and Lukasz Kaiser. Universal
transformers. ArXiv, abs/1807.03819, 2019.

Joshua Foer. Moonwalking with Einstein: The Art and Science of Remembering Everything. 2012.

Alex Graves, Greg Wayne, Malcolm Reynolds, Tim Harley, Ivo Danihelka, Agnieszka Grabska-
Barwiniska, Sergio Gémez Colmenarejo, Edward Grefenstette, Tiago Ramalho, John Agapiou,
AdriaPuigdomenech Badia, Karl Moritz Hermann, Yori Zwols, Georg Ostrovski, Adam Cain,
Helen King, Christopher Summerfield, Phil Blunsom, Koray Kavukcuoglu, and Demis Hassabis.
Hybrid computing using a neural network with dynamic external memory. Nature, 538(7626):
471-476, 2016.

Jack W. Rae, Jonathan J. Hunt, Ivo Danihelka, Tim Harley, A. Senior, Greg Wayne, A. Graves, and

T. Lillicrap. Scaling memory-augmented neural networks with sparse reads and writes. In NIPS,
2016.

John Schulman, F. Wolski, Prafulla Dhariwal, A. Radford, and Oleg Klimov. Proximal policy
optimization algorithms. ArXiv, abs/1707.06347, 2017.



	Introduction
	DNC with Memory demon
	Results
	Associated-recall and Copy task
	bAbi-10 task

	Shortcomming and future work
	Comparing with some of the state of art
	Scalability


