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Abstract

Evidence accumulation is thought to be fundamental for decision-making in humans
and other mammals. Neuroscience studies suggest that the hippocampus encodes
a low-dimensional ordered representation of evidence through sequential neural
activity. Cognitive modelers have proposed a mechanism by which such sequential
activity could emerge through the modulation of recurrent weights with a change
in the amount of evidence. Here we integrated a cognitive science model inside
a Reinforcement Learning (RL) agent and trained the agent to perform a simple
evidence accumulation task inspired by the behavioral experiments on animals. We
compared the agent’s performance with the performance of agents equipped with
GRUs and RNNs. We found that the agent based on a cognitive model was able to
learn much faster and generalize better while having significantly fewer parameters.
This study illustrates how integrating cognitive models and deep learning systems
can lead to brain-like neural representations that can improve learning.

1 Introduction

Converging evidence from cognitive science and neuroscience suggests that the brain represents
physical and abstract variables in a structured form, as mental or cognitive maps. A remarkable
example of this is a recent study by Nieh et al. [11], in which mice were trained to perform an
“accumulating towers task”. In this task mice moved along a virtual track and observed objects
(towers) on the left- and right-hand sides. When they arrived at the end of the track, to receive a
reward, they had to turn left or right, depending on which side had more towers. The difference in
the number of towers here corresponds to the amount of evidence for turning left vs. turning right.
Nieh et al. [11] recorded the activity of hundreds of individual neurons from mice hippocampus. The
results indicated the existence of cells tuned to a particular difference in the number of towers, such
that a population of neurons tiles the entire evidence axis (see also [10]).

Cognitive scientists have developed elaborate models of evidence accumulation to explain the
response time in a variety of behavioral tasks [7, 8, 14]. These models hypothesize that the brain
contains an internal variable that represents the progress towards the decision. A neural-level cognitive
model proposed that the brain could implement this process using a memory model based on the
Laplace transform [6]. The Laplace framework gives rise to map-like representations, and it has been
successful in describing the emergence of sequentially activated time cells [15] and place cells [4, 3].

Here we integrate the Laplace framework into Reinforcement Learning (RL) agents. The Laplace
framework is based on recurrent neurons with analytically computed weights. We use the Laplace
and inverse Laplace transform to generate a map-like representation of the amount of evidence. This
representation is then fed into a trainable RL module based on the A2C architecture [9]. We compare
map-based agents to standard RL agents that use simple Recurrent Neural Networks (RNNs) and
Gated Recurrent Units (GRUs) [1]. The comparison is made in terms of performance and similarity
of the neural activity to neural activity recorded in the brain.
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Figure 1: Schematic of the accumulating towers environment. In this simple example, two towers
appeared on the right, and one tower appeared on the left, so the agent has to turn right once it reaches
the end of the track.
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Figure 2: Example of the Laplace and inverse Laplace transform with and without modulatory input.
(a) In the absence of modulatory input (α = 1) the impulse response of the Laplace transform
decays exponentially with decay rate s. The impulse response of the inverse Laplace transform has
a unimodal shape. Note that if time t was shown on the log-scale, the unimodal curves would be
equally wide and equidistant. (b) α modulates the decay rate of F and it is proportional to the change
in the count. This makes units in f̃ develop unimodal basis functions that are tuned to count rather
than to time and peak at n∗.

2 Methods

2.1 Accumulating towers task

We designed a simple version of the “accumulating towers task”. Agents had to navigate down a
virtual track composed of only three inputs: left, right and middle. In each episode, agents start
from the beginning of the virtual track and observe towers (represented by the input value changing
from 0 to 1) on each side of the environment (Fig. 1). Agents had four available actions: left, right,
forward, and backward. Positions of towers were decided randomly in each episode. Similar to the
neuroscience studies, the maximum number of towers on one side was 14. Once the agent arrived
at the end of the track, the middle input changed from zero to one, signifying that it hit the wall. In
order to receive the reward, the agent had to turn left or right, depending on which side had more
towers. We set the magnitude of the reward to 10, penalize the agents for hitting the wall at the end
of the track or going backward with a -1 negative reward and penalize the agent for hitting the side
walls with a -0.1 negative reward.

2.2 RNN implementation of evidence accumulation using the Laplace domain

Evidence accumulation implemented through the Laplace domain is a key component of the
cognitively-inspired RL agent. We write a discrete-time approximation of the Laplace transform as
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an RNN with a diagonal connectivity matrix and a linear activation function:

Fs;t = WFs;t−1 + ft, (1)

where W = diag(e−α(t)s∆t). We define α as a change in numerosity: α = ∆n/∆t and set
ft = δ(t = 0). Thus the rate of change of Fs;t is modulated by α. If α = 1, Fs;t decays
exponentially with rate constant s. This modulation converts a function of time into a function
of numerosity. Consequently, the inverse Laplace transform f̃n∗;n with n∗ = k/s, which can be
computed by applying a k-th order derivative to Fs;t (see Appendix for detailed derivation), will
result in neurons tuned to log-spaced values of n∗ (Fig. 2). Log-spaced n∗ and scale-invariance of
the inverse Laplace transform give rise to a log-compressed representation of numerosity, consistent
with the Weber-Fechner law [2, 12].

In tasks where evidence corresponds to a difference of some quantities, such as the accumulating
towers task, we can use the Laplace domain to perform the subtraction by computing a cross-
correlation between the f̃ functions (which is equivalent to a product in the Laplace domain) since
they represent the different counts. This will result in a new f̃ function with neurons tuned to the
amount of evidence (see Appendix for detailed derivation).

2.3 Agent architecture

The agents received three inputs from the environment fed directly into the recurrent layer (Fig. A1).
The recurrent layer was either RNN, GRU or an RNN based on the Laplace framework as described
above. When the Laplace framework was used, we had three independent f̃ modules. Each module
had 20 n∗ values spaced logarithmically from 5 to 100. The value of parameter k was set to 8.
Parameter k controls the sharpness of the unimodal basis functions, and this value was chosen to
ensure no gaps between them. Note also that the input into the f̃ modules was delivered to α, which
controls recurrent weights of the population of units F . This is a conceptual difference in comparison
to other RNNs, where recurrent weights are tuned separately for each unit. The strength of the
proposed approach is that the populations of neurons encode functions over relevant variables such
that f̃ directly represents the count of the objects. In addition to computing f̃ , we also computed the
subtraction f̃sub of each pair of f̃ . This was done by computing the product in the Laplace domain
between each pair of F as described in the previous section. The total number of units was 180 (20
units per module, 3 independent modules and 6 subtraction modules). When other RNNs were used,
the dense layer was mapped to 180 recurrent units. The output of the recurrent layer was passed to an
actor network and a critic network. Both actor and critic consist of a single layer fully connected
neural network. For all agents, we explored two different learning rates 0.001 and 0.0001.

3 Results

We trained and evaluated agents in an accumulating towers RL environment. We compared several
agents based on the Laplace framework. One pair of agents used the inverse Laplace transform and
either included the subtraction (f̃sub) or excluded the subtraction (f̃ ). The other pair was without the
inverse Laplace transform, again both including the subtraction (Fsub) and excluding it (F ). We also
compared agents based on a simple RNN and GRU, as well as versions of those agents with frozen
recurrent weights.

The agents were trained and evaluated in 300 steps long environment. We trained four different
agents for each of the eight models and performed 100 validation runs every 500 episodes. While
other agents started increasing before f̃sub, f̃sub agents were the first to learn the task and converge to
a reward value of 10 (Fig. 3, Fig. A9 and the first column in Table A1). Fsub agents converged next,
but they showed progress in learning faster than other agents. Taken together, these results indicate
the importance of the subtraction operation. GRU agents managed to reach performance very close
to 10, indicating that they can learn the task as well. On the other hand, the RNN agents did not learn
the task in 100k episodes, indicating that gating was important for correct performance.

To test the ability of the agents to generalize, we also evaluated them on 3000 and 10000 steps long
tracks without ever training them on tracks of that length (second and third column in Table A1).
Agents based on the cognitive model showed great resilience to this kind of rescaling. This is not
surprising since the representation was designed to change with the change in the amount of evidence.
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Figure 3: Agent performance on accumulating towers task. The two plots show two different zoom
levels.
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Figure 4: The activity of neurons in (f̃sub) after 100k episodes of the accumulating towers task
resembles the activity of neurons recorded in the hippocampus. Similar to plots in [11, 10], neurons
are sorted by peak activity. Each row is normalized such that the activity ranges from 0 to 1.

On the other hand, the performance of GRU agents dropped at unseen track lengths but remained
well above chance.

We visualized the neural activity of each of the four agents for each of eight models after 100k
episodes of training. As expected, neurons in f̃sub agents activated sequentially as a function of
evidence resembling the activity in neural recordings from the hippocampus [11, 10] (Fig. 4). Some
of the neurons in GRU agents showed tuning to the magnitude of evidence with often prominent
asymmetry between positive and negative amounts of evidence (Fig. A3).

4 Conclusions

This work provides an example of incorporating models from cognitive and computational neuro-
science into artificial neural networks trained using error backpropagation. Agents based on the
cognitive model were able to learn faster and generalize better despite having fewer parameters. This
indicates that the A2C algorithm was able to use the neural representation from the cognitive model.
This representation also resembled data from neural recordings in [11, 10] characterized with the
sequential activation as a function of the amount of evidence.
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A Appendix

Converting a Laplace-transform based memory model into a numerosity representation

We define the Laplace transform of function f(t) from −∞ to the present t:

F (s; t) =

∫ t

0

e−s(t−t′)f(t′)dt′. (2)

We restrict variable s to real positive values. 1

The above equation can be expressed in a differential form where s appears as a rate constant of a leaky integrator:

dF (s; t)

dt
= −sF (s; t) + f(t). (3)

Fig. 2a shows the impulse response of the above equation for several values of s.

To convert a representation of time into a representation of numerosity n(t) (how many times some input was
observed) we modulate s with a rate of change α expressed as a time derivative of numerosity (α = dn/dt):

dF (s; t)

dt
=

dn

dt
(−sF (s; t) + f(t)) . (4)

By reorganizing terms in the above equation and applying the chain rule we can rewrite the equation as a function
of n, instead of t (Fig. 2b):

dF (s;n)

dn
= −sF (s;n) + f(n), (5)

and we set f(n) = δ(t = 0).

Inverting the Laplace transform reconstructs the input as a function of the internal variable n∗, which corresponds
to n. The inverse, which we denote as f̃(n∗; t) can be computed using the Post inversion formula [13]:

f̃(n∗;n) = L−1
k F (s;n) =

(−1)k

k!
sk+1 dk

dsk
F (s;n), (6)

where n∗ := k/s and k → ∞. As we show below, the reconstruction gives rise to units tuned to a particular
n. By solving ∂f̃n∗;n/∂n = 0 we see that f̃(n∗;n) peaks at n∗ = n. For s being a continuous variable
and k → ∞, the width of the peak is infinitesimally small, providing a perfect reconstruction of the observed
quantity.

Discrete implementation

For a neural network implementation, we discretize the Laplace and inverse Laplace transform for both s and t.
To select values s in an informed way, we compute the impulse response of f̃n∗;n:

f̃n∗;n =
1

u(t)

kk+1

k!

(
u(t)

n∗

)k+1

e−k
u(t)
n∗ , (7)

where u =
∑t

i=0 α(ti). When s is discrete and k is finite, f̃n∗;n is a set of unimodal basis functions (when s
is continuous and k → ∞, those unimodal basis functions turn into delta functions with spacing → 0). The
coefficient of variation of f̃n∗;n is independent of n∗ and n: c = 1/

√
k + 1. This implies that the width of the

unimodal basis functions increases linearly with their peak time. When observed as a function of log(n), the
width of the unimodal basis functions is constant. This property of the Post inversion formula is relevant for
modeling human perception due to the Weber-Fechner law [2, 12]. This law states that the relationship between
the perceived magnitude of the stimulus and its true magnitude is logarithmic, motivating the use of logarithmic
units such as decibel and candela. To ensure equidistant spacing of unimodal basis functions along the log-axis
we space n∗ logarithmically. This results in dramatic conservation of resources, especially when representing
large quantities since the number of units in f̃n∗;n grows as a function of log(n) rather than n. Note that fixing
the values of n∗ and choosing k also fixes values of s since s = k/n∗.

1The Laplace transform defines s as a complex variable. This choice would result in exponentially growing
and oscillatory neural activity, causing numerical instabilities when computing the inverse Laplace transform.
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Subtraction of functions using the Laplace domain

In the accumulating towers task, Eq. 5 can enable the agent to learn to represent the number of towers on each
side. However, the latent variable that should determine the agent’s decision is not the number of towers on each
side but the difference between those numbers (the agent needs to turn towards the side which had more towers).
This is a non-trivial problem since the number of towers is not represented as a scalar but as a function over n.
Fortuitously, the Laplace domain enables access to a number of useful operations, including subtraction of two
functions [5]. To show this, let us define f(a) and g(a) as functions representing two distributions of possible
values for the number a in the range 0 to amax. Outside this range, the functions are assumed to vanish. We
define the operation of subtraction of these two distributions [f − g](a) to be the cross-correlation of the two
functions:

[f − g](a) ≡
∫ ∞

0

f(x′)g(a+ x′)dx′. (8)

To illustrate that the above operation results in subtraction of two functions, consider a simple case where each
of the functions is a delta function: f = δ(a1) and g = δ(a2). Then [f − g] is a delta function at a1 − a2.
To implement cross-correlation in the Laplace domain we can turn Eq. 8 into convolution by reflecting g(a)
around amax: gr = g(amax − a). Point-wise product of the Laplace transforms of two functions corresponds
to their convolution in the time domain. Point-wise multiplication of the Laplace transform of f(a) and gr(a)
corresponds to cross-correlation of f(a) and g(a) in the time domain, which is equivalent to their subtraction
[f − g](a). Note that for subtraction we need to consider both positive and negative values. Since we only use
positive values of s, we are not able to directly represent the negative axis. To work around this, we compute
both [f − g](a) and [g − f ](a).

d=300 d=3000 d=10000 # Parameters
f̃sub 10.000 ± 0.000 10.000 ± 0.000 10.000 ± 0.000 724
f̃ 9.903 ± 0.066 9.925 ± 0.065 9.925 ± 0.041 244

Fsub 10.000 ± 0.000 10.000 ± 0.000 10.000 ± 0.000 724
F 8.995 ± 0.287 8.675 ± 0.361 8.900 ± 0.272 244

RNN 4.475 ± 0.456 4.600 ± 0.281 4.700 ± 0.576 34024
GRU 9.980 ± 0.000 9.600 ± 0.146 8.425 ± 0.504 100624

RNNFROZEN −21.0 ± 0.000 −201.0 ± 0.000 −601.0 ± 0.000 724
GRUFROZEN −14.473 ± 5.653 −149.3 ± 44.77 −449.4 ± 131.3 724

Table A1: Mean reward +/- standard error across four runs after 100k episodes of training in d=300
steps long environment. Validation was done in 300, 3000 and 10000 steps long environments.

Figure A1: The agent architecture for accumulating towers task. We compare simple RNN, GRU and
Laplace-based RNN described here.
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Figure A2: Same as Fig. 4 but for f̃ agents

a b c d

Figure A3: Same as Fig. 4 but for GRU agents.

a b c d

Figure A4: Same as Fig. 4 but for F agents

a b c d

Figure A5: Same as Fig. 4 but for Fsub agents.
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Figure A6: Same as Fig. 4 but for GRUfrozen agents.

a b c d

Figure A7: Same as Fig. 4 but for RNN agents

a b c d

Figure A8: Same as Fig. 4 but for RNNfrozen agents.
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Figure A9: Agent performance on the accumulating towers task (same data as in Fig. 3 but different
zoom level).
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