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Abstract

Humans navigate complex environments using only visual cues and self-motion.
Mapping an environment is an essential task for navigation within a physical space;
neuroscientists and cognitive scientists also postulate that mapping algorithms
underlie cognition by mapping concepts, memories, and other nonspatial variables.
Despite the broad importance of mapping algorithms in neuroscience, it is not
clear how neural networks can build spatial maps exclusively from sensor obser-
vations without access to the environment’s coordinates through reinforcement
learning or supervised learning. Path integration, for example, implicitly needs the
environment’s coordinates to predict how past velocities translate into the current
position. Here we show that predicting sensory observations—called predictive
coding—extends path integration from implicitly requiring the environment’s coor-
dinates. Specifically, a neural network constructs an environmental map in its latent
space by predicting visual input. As the network traverses complex environments
in Minecraft, spatial proximity between object positions affects distances in the
network’s latent space. The relationship depends on the uniqueness of the environ-
ment’s visual scene as measured by the mutual information between the images and
spatial position. Predictive coding extends to any sequential dataset. Observations
from paths traversing a manifold can generate such sequential data. We anticipate
neural networks that perform predictive coding identify the underlying manifold
without requiring the manifold’s coordinates.

1 Introduction

After traversing a few paths, humans can learn to map complex environments using only visual scenes
and self-motion. Experimental evidence in neuroscience also indicates that humans use mapping
to build relationships between concepts given only a few examples. Despite the significance of
mapping algorithms in neuroscience, it is not clear how neural networks can build spatial maps
exclusively from sensor observations without access to the environment’s coordinates. For example,
path integration, also called dead-reckoning, estimates the current position xt given the past velocity
vt. Path integration implicitly uses the environment’s coordinates in how the velocity influences the
transition function ℙ[xt|vt]. Recent approaches such as Banino et al. (2018) use coordinates as labels
in supervised training. Moreover, studies such as Gupta et al. (2019) use the coordinates to determine
whether an agent reaches a goal.
We show that predicting sensory observations—called predictive coding—is sufficient to map an
environment. Predictive coding extends path integration from requiring the environment’s coordinates.
Specifically, a neural network constructs an environmental map in its latent space by traversing an
environment and predicting visual scenes. The agent traverses various Minecraft environments with
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Figure 1: A predictive coding neural network’s latent space constructs an environmental map.
a, an agent performs predictive coding by predicting visual scenes while traversing an environment.
A predictive coding neural networks encodes the current visual observation and action into a latent
space, which the decoder uses to predict the next visual observation. b, distances in the neural
network’s latent space depend on the spatial proximity between object positions. The blue line (▬)
plots distances from the neural network’s latent space to the the corresponding physical coordinates.
The black line (▬) plots an ideal decoder from the latent space to physical coordinates. The green
line (▬) plots a random decoder. c, the neural network’s latent space accurately decodes the physical
coordinates. The orange dot (∙) plots the predicted coordinates from the network’s latent space from a
linear model. The blue dot (∙) plots the physical coordinate position.

translational motion and receives only visual data. As the agent traverses the environment, distances
in the network’s latent space depend on the spatial proximity of object positions. Moreover, we
demonstrate that the network’s latent space predicts spatial position: a linear model can predict
the environment’s coordinates from the predictive coding network’s latent space. The prediction’s
accuracy depends on the uniqueness of the environment’s visual scene as measured by the mutual
information between images and spatial position.

2 Related work

The hippocampal system not only develops a map of a spatial environment but also organizes sequential
experiences (Buzsáki & Tingley, 2018). Experimental evidence suggests that the hippocampal
maps sequences and abstract concepts by their relationships on an abstract map. Several studies
establish that the hippocampal system also maps nonspatial variables—time (MacDonald et al., 2011;
Pastalkova et al., 2008) and auditory frequency (Aronov et al., 2017). Nieh et al. (2021) find that the
hippocampal system integrates sensory input to determine the environment’s state—not just position.
Constantinescu et al. (2016) extends the principle that the hippocampus is a mapping unit, indicating
humans organize abstract concepts using a gridlike neural representation.
Neurological and behavioral evidence indicate that path integration develops a map of an environment.
However, it is not clear conceptually how humans map an environment from visual cues and self-
motion—without knowledge of their own kinematics or the environment’s coordinates. Banino et al.
(2018), Cueva & Wei (2018), and Zhang et al. (2021) demonstrate that artificial neural networks can
perform path integration and use a map to navigate. However, these studies require supervised training
on the environment’s coordinates. Similarly, Duan et al. (2016), Gupta et al. (2019), Mirowski et al.
(2018), and Singh Chaplot et al. (2020) use visual input for mapping but encode the environment’s
coordinates either through a goal reward or through supervised training on coordinates. Previous
studies implicitly introduce the environment’s coordinates into the network by goal rewards, supervised
training, or the agent’s kinematics. It is unclear whether networks can map an environment exclusively
from sensory data—without knowledge of the agent’s kinematics.
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3 Predictive coding

Predictive inference involves framing the problem of learning from a sequence of actions and obser-
vations. The learner and decision maker are called the agent. With everything the agent interacts is
called the environment. The state spaceS and the action spaceA are both topologies. The observation
space O are random variables O dependent only on the current state s in the state space S. For a
sequence (s1,… , sT ) of states, we assume the observations are continuous in distribution

lim
t′→t

ℙ[Ot′ |st′ ] = ℙ[Ot|st].

The learning problem is the following. An agent constructs a sequence of actions
(

a1,… , aT
)

, and
observes samples

(

O(s1),… , O(sT )
)

. The goal is for the person to learn the stochastic process
ℙ[O(st)|O(st−1),… , O(s1), at−1,… , a1].

for every state s in S and action a in A.
Consider the example of a person walking through an open field (Figure 1.a). The person has a
position (x, y). The person can walk around facing north. The state space is the Euclidean space ℝ2.
The action space is the person’s velocity (vx, vy). Every action (vxt−1, v

y
t−1) deterministically maps a

past state (xt−1, yt−1) to a current position (xt, yt) with the equations
xt = xt−1 + vxt−1t, yt = yt−1 + v

y
t−1t

At each position in ℝ2 there exists the random variable observations O(x, y) the person can see
given their state (x, y). A path, as a sequence of actions, generates a sequence of observations
(O1,… , OT ) ∼ (ℙ[O(x1, y1)],… ,ℙ[O(xT , yT )]), which satisfies a stochastic process. The goal is
for the person to learn the stochastic process

ℙ[O(xt, yt)|O(xt−1, yt−1),… , O(x1, y1), (vxt−1, v
y
t−1),… , (vx1 , v

y
1)]

for every position (x, y) and action (vx, vy).

4 A predictive coding neural network’s latent space constructs an
environmental map

We study how a neural network—without the environment’s coordinates—maps an environment by
performing predictive coding using the Malmo environment in Minecraft (Johnson et al., 2016). We
construct an open field (Figure 1.a) enclosed by a fence of 20×20 blocks. Columns of varying heights
and colors provide the agent with a unique visual scene at each position. The agent can traverse the
environment by moving forwards, backwards, left, and right by one block. We use an encoder-decoder
convolutional neural network† with an embedding from the action to the latent space (Figure 1.a). To
solve the predictive coding problem we assume the predictive coding distribution is a multivariate
Gaussian. We estimate the density p by solving the maximum likelihood estimator

argmax
Θ

log p
(

Ot|Ot−1, (vxt−1, v
y
t−1),Θ

)

= argmax
Θ

1
2
(

Ot − ÔΘ(Ot−1, vxt−1, v
y
t−1)

)2

The neural network approximates predictive coding by minimizing the mean-squared error between
the current visual scene and its prediction given the previous image and action.
We first show the latent space’s capability to estimate the environment’s distances within one block,
demonstrating the latent space contains significant information about the physical space. To determine
the latent axes that capture the environment’s geometry, we fit a linear model that estimates the
environment’s coordinates from the latent space. We calculate the pairwise distance between the
predicted locations as well as the actual locations (Figure 1.c). For the 20 × 20 block lattice, the
mean error between predicted distances and actual distances is 0.743 ± 0.019 blocks (95% confidence
interval).
Furthermore, the latent space captures a linear representation of physical coordinates. Figure 1.c
shows the linear model’s coordinate estimates (∙) from the latent space. The grey lines show the
error from the physical coordinates (∙) with prediction error of 0.779 ± 0.186 blocks. The prediction
error increases as the agent travels to the front, indicating the latent space contains less positional
information toward the front.
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Figure 2: Predictability of spatial location from the latent space depends on the uniqueness
of the environment’s visual scene. a, Environment A. b, Environment B. c-d, the expected log
probability difference between the joint probability p(x ∈ X,O) and marginal probabilities p(x ∈ X)
and p(O) for a position x ∈ X and visual scenesO. Lower log difference indicates a higher uncertainty
of the position from the visual scene. e-f, the non-zero latent space units. The more zero latent
space units (145 ∶ 477) in Environment B corresponds with the decreased mutual information
(1998.03 ∶ 3067.0) and indicates the latent space stores less spatial information. g-h, predicted
positions given by a linear model on the neural network’s latent space in Environments A and B,
respectively. In Environment B, the latent space reconciles unidentifiable areas by minimizing
prediction errors of physical coordinates.

5 Predictability of spatial location from the latent space depends on the
uniqueness of the environment’s visual scene

In section 4, we demonstrate a neural network can map the environment in Figure 1.a by learning
predictive coding. In this environment (Environment A), positions are relatively identifiable from
visual landmarks. Many environments contain areas with no identifiable landmarks. Introducing
an environment (Environment B) with sparse landmarks (Figure 2.b), we show the neural network
reconciles these areas in latent space by minimizing prediction errors of the physical coordinates.
In this environment, many locations are not identifiable from landmarks. Between Environments
A and B, we calculate the expected log difference EO∼ℙ[O]

[

log p(x ∈ X,O) − log p(x ∈ X)p(O)
]

between the joint probability p(X,O) and marginal probabilities p(X) and p(O) between the location
x ∈ X and the visual scene O—based on the presence of visual landmarks (Figure 2.c-d). The
mutual information I(X;O) is the expectation of this parameter, i.e., E[log p(X,O) − log p(X)p(O)].
Intuitively, areas in Environment B with a low log difference have locations that are less predictable
from visual scenes—with a value of zero if the visual scene and positions are independent.
We visualize the latent space units as the agent traverses the environment (Figure 2.e-f). The neural
network in Environment B has notably more zero latent units as compared to the neural network
in Environment A. Similar to section 4, we use a linear model to estimate the predictability of the
environment’s positions from the network’s latent space (Figure 2.g-h). The prediction error depends
on the log probability difference EO∼ℙ[O]

[

log p(X,O) − log p(X)p(O)
]

between the visual scene and
the agent’s position; the network reconciles positions without landmarks by guessing in latent space.

6 Discussion

Humans can navigate complex environments using only visual landmarks and self-motion; however,
current algorithms require the environment’s coordinates or knowledge of their own kinematics. We
demonstrated that predictive coding is sufficient to map an environment. By predicting visual scenes,
predictive coding generalizes the prediction task of path integration to arbitrary visual scenes. In this
paper, we treat predictive coding with the state space  as a Euclidean space. The state space  can
be any topology, most notably a differentiable manifold. Observations (O((t))t∈T from a path (t)
along the manifold generates a stochastic process. We anticipate a majority of sequential learning
problems can be formulated as predictive coding on manifolds. By learning predictive coding, neural
networks may identify the underlying manifold without requiring the manifold’s coordinates.
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Supplemental Information

6.1 Detailed experimental setup

For all experiments, the Malmo framework in Minecraft (Johnson et al., 2016) simulate the envi-
ronments. The agent traverses the environment by a directed random walk, which is discretized on
the lattice. The actions are represented by a one-hot vector (left, right, forward, backward). Visual
observations are represented by 64 × 64 RGB images.
For training, we use an U-Net architecture (Ronneberger et al., 2015) with a ResNet38 encoder (He
et al., 2015) encoder and the corresponding ResNet38 with transposed convolutions for the decoder. A
linear transform maps the action one-hot vector {0, 1}4 to 512 channels of ℝ2×2 units. The ℝ2×2×512
output units are concatenated to the output of the ResNet38 encoder to form a ℝ2×2×1024 array. The
ℝ2×2×1024 is input into the corresponding ResNet38 decoder.
For Environment A and Environment B, the neural network trained on 20, 000 batches with a batch
size of 128. The neural network minimizes the mean-squared error between the predicted and actual
image using RMSprop with a learning rate of 10−3 with a decay of 0.1 every 5, 000 batches and a l2
weight decay of 5 × 10−6.

6.2 Extended figures

a

c d
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Figure 3: Predictive coding with multiple past observations eliminates uncertainty in spatial
location. a, environment with locations unidentifiable from the visual scene (Environment B).
b, a predictive coding neural network incorporates multi-head attention to encode multiple past
observations and actions. c, a predictive coding neural network without attention cannot recover
areas unidentifiable from the visual scene. The orange dot (∙) plots the predicted coordinates from the
network’s latent space from a linear model. The blue dot (∙) plots the physical coordinate position. d, a
predictive coding neural network that incorporates multiple past observations and actions can recover
visually unidentifiable areas. Predicted coordinates overlaps closely with the physical coordinate
positions.

6



b ca

“move forward”

d e
Action Action

Figure 4: Actions correspond to coordinate transformations in latent space. a, environment with
locations unidentifiable from the visual scene (Environment B). b, predicted coordinates from the
network’s latent space before incorporating the current action. c, predicted coordinates from the
network’s latent space after incorporating the current action. The predicted coordinates demonstrate
a translation forward. The neural network—without knowledge of its kinematics—is able learn its
motion in the environment by only predicting visual observations. d, before incorporating the current
action, the network’s latent space is compared to the environment’s physical coordinates (Figure 4.b).
e, after incorporating the current action, the network’s latent space is compared to the environment’s
physical coordinates (Figure 4.c).
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Figure 5: Predictive coding—compared to auto-encoding—builds a more robust environmental
map. a, environment with locations unidentifiable from the visual scene (Environment B). b, Rather
than predicting the current observation, auto-encoding predicts the same image by encoding it into
a low dimensional space then decoding it to its original image. c, the predictive coding neural
network’s predicted coordinates. d, the auto-encoding neural network’s predicted coordinates. The
auto-encoder recovers the physical coordinates with a much larger error compared to the predictive
coding neural network. In addition, the predictive coding neural network reconciles unidentifiable
areas by minimizing prediction errors of physical coordinates, which is absent in the auto-encoder.

a b

Figure 6: Errors in predicted positions correspond to the log probability difference between
visual scenes and positions. A linear model fits the neural network’s latent space to predict the
coordinates in Environment A (a) and Environment B (b). The log probability difference between
the joint probability p(X,O) and the marginal probabilities p(X) and p(O) for positions X and visual
scenes O.
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Figure 7: Visual scenes in Environment A. Each image corresponds the agent’s visual observation
from its position in Environment A.
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Figure 8: Visual scenes in Environment B. Each image corresponds the agent’s visual observation
from its position in Environment B.
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Figure 9: Predicted visual scenes in Environment A. Each image corresponds the agent’s predicted
visual observation by moving right from its position in Environment A.
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Figure 10: Predicted visual scenes in Environment B. Each image corresponds the agent’s predicted
visual observation by moving right from its position in Environment B.
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