
CL-LSG: Continual Learning via Learnable Sparse
Growth

Li Yang
School of ECEE

Arizona State University
lyang166@asu.edu

Sen Lin
School of ECEE

Arizona State University
slin70@asu.edu

Junshan Zhang
Department of ECE

University of California, Davis
jazh@ucdavis.edu

Deliang Fan
School of ECEE

Arizona State University
dfan@asu.edu

Abstract

Continual learning (CL) has been developed to learn new tasks sequentially and
perform knowledge transfer from the old tasks to the new ones without forgetting,
which is well known as catastrophic forgetting. While recent structure-based
learning methods show the capability of alleviating the forgetting problem, these
methods require a complex learning process to gradually grow-and-prune of a
full-size network for each task, which is inefficient. To address this problem and
enable efficient network expansion for new tasks, to the best of our knowledge, we
are the first to develop a learnable sparse growth (LSG) method, which explicitly
optimizes the model growth to only select important and necessary channels for
growing. Building on the LSG, we then propose CL-LSG, a novel end-to-end
CL framework to grow the model for each new task dynamically and sparsely.
Different from all previous structure-based CL methods that start from and then
prune (i.e., two-step) a full-size network, our framework starts from a compact
seed network with a much smaller size and grows to the necessary model size (i.e.,
one-step) for each task, which eliminates the need of additional pruning in previous
structure-based growing methods.

1 Introduction
It is well-known that human can learn new tasks without forgetting old ones. However, Deep Neural
Networks (DNN) may forget the old knowledge when it is trained to learn new tasks. Such a
phenomenon is known as catastrophic forgetting. To address this problem and enable to continuously
memorize knowledge as human beings do, continual learning (CL) [5], a.k.a, lifelong learning,
has recently attracted much attention. It aims to build a model that is incrementally updated over
a sequence of tasks, performing knowledge transfer from the old tasks to the new ones without
catastrophic forgetting.

In this work, we focus on the structure-based methods [11, 8, 2, 10, 3, 17, 7, 13], which dynamically
expand the network capacity to reduce the interference between the new tasks and the previously
learned ones. However, such method may incur significant computation costs due to expanding and
pruning the full-sized backbone network. For example, DEN [17] and CPG [3] combines the model
pruning, weight selection, and model expansion methods, which gradually prune the task-shared
weights and then learn additional task-specific weights. The reason why these methods require
the additional pruning or searching step is that they grow the network with a redundant size. The
redundant growth not only introduces additional computation cost but also interferes with the learning

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

a) Conventional structure-based method b) CL-LSG

Prune Grow GrowPrune

𝑇!𝑇!"# 𝑇!"# 𝑇!"#𝑇! 𝑇!

Figure 1: The workflow of a) the conventional structure-based method [17, 3] starts from a full-sized
model, and then needs to gradually prune-and-grow for each task; b) our proposed CL-LSG method
starts from a small seed model and grows dynamically and sparsely for each task.

performance, calling for a more elegant growing method to achieve efficient CL. Thus inspired, we
advocate to learn a compact and sparse structure for a task in an opposite way by sparsely growing
from a small seed network, instead of training and reducing from a large full-sized network.

To achieve this goal, we first develop a learnable sparse growth (LSG) memory mechanism for
efficient model expansion, building on which a novel end-to-end structure-based continual learning
framework, CL-LSG, is devised to dynamically and sparsely grow the model. Specifically, different
from all previous structure-based CL methods that prune a full-sized network, CL-LSG starts from
a compact seed network with a much smaller size as shown in Figure 1. As the model weights for
old tasks are fixed, we can memorize the required function mappings in a compact model without
affecting their accuracy, therefore addressing the catastrophic forgetting issue. By growing from
a small network and sparsely expanding the model, the computation cost is significantly reduced,
while the learning performance is guaranteed by introducing more degree of freedom for optimization
via the expanded network through LSG method. We validate CL-LSG against multiple SOTA
methods, which shows 0.71%, 1.0% and 1.2% accuracy improvement on CIFAR-100 Split, CIFAR-
100 Superclass and MiniImageNet Split benchmarks, respectively, with the same or even smaller
growing model size.

2 Related Work
Continual Learning via Structure-based Method. Structure-based approaches [11, 8, 2,
10, 3, 17, 7, 13] adapt the network architecture with a sequence of tasks. As continually
growing the architecture retains the model redundancy, some approaches, e.g., DEN [17] per-
forms model compression before expansion to obtain a more compact model. Newly added
weights and old weights are both adapted for the new task with sparse constraints. CPG
[3] combines the model pruning, weight selection and model expansion methods, which
gradually prunes the task-shared weights and then learns additional task-specific weights.

Table 1: Grow metrics for different methods
Grow metrics Works

Target accuracy/loss DEN[17],CPG[3], Lifelong tickets[1]

Grow by default PNN[11], DAN[10], APD[16],
SpaceNet[12], DER[14]

In the structure-based methods, when to
grow or if it is necessary to grow for each
task is an open question. There are mainly
two kinds of grow metrics adopted nowa-
days in the literature as illustrated in Tab.1:
1) target accuracy/threshold: the current
model will grow if the accuracy cannot reach the target accuracy which is obtained by training the
full size model from scratch; 2) grow by default: the model will grow directly for each task by default.
In this work, we adapt the target accuracy grow metric in the experiments following [17, 3, 1].

Model Growth. Recently, [18] proposes a method to dynamically grow networks for single task by
continually re-configuring their architecture during training, which aims to reduce the computational
cost. Such a re-configuring process is achieved by learning a channel-wise mask, namely grown-
mask, mg = {mg

n}Nn=1 for a N -layer convolutional neural network, where each binary element
mg

i,n ∈ {0, 1} is associated with a channel i, to enable training-time pruning (mg
i,n = 1 → 0) and

growing (mg
i,n = 0 → 1) dynamics. The learnable mask variable can be jointly optimized with

weights w using data (x,y), which is formulated as follows:

L(w,mg;x) = L(f({w ⊙mg};x),y) + λ||mg||0 (1)

where w ⊙ mg is a general expression of growing channels and L denotes a loss function (e.g.,
cross-entropy loss for classification). The l0 term encourages the sparsity of the grown-mask mg so
as to limit the grow strength, and λ is a coefficient scaling factor.

2

3 Methodology
3.1 Proposed Learnable Sparse Growth (LSG) with Attentive Sparse Mask
As alluded to earlier, such two-stage (i.e., grow-then-prune) conventional structure-based approaches
clearly incurs additional computation cost. In this work, we propose a novel approach, namely
learnable sparse growth, to enable efficient and sparse model growth for learning a new task.

Figure 2: Learnable sparse growth
(LSG) with attentive-mask, ma

To address these important issues, we propose a novel learnable
sparse grow method, through introducing a learnable kernel-
wise mask ma to selectively pick the kernels among all grown
channels, named as attentive-mask. As shown in Figure 2, the
kernel-wise mask ma introduces sparsity in the grown weights,
which can be jointly optimized as:

L(w,mg,ma;x)

=L(f({w ⊙mg ⊙ma};x),y) + λ||mg||0 (2)

where w is the full size model. Intuitively, minimizing Equa-
tion (2) explicitly optimizes the model growth in a way that
only important and necessary channels for learning the current
task will be added to the backbone network. Compared with
prior growth method [18], which works for single task learning, our contribution lies in being the first
to propose an efficient continual learning framework with learnable sparse growth as the network
growing technique. By doing so, our LSG brings multiple benefits in CL setting, including: 1) it
mitigates the unstable training on relatively smaller CL new task dataset; 2) it reduces the overfitting
issue and achieves better accuracy with the same model size; 3) the sparse weights from attentive
mask for current task can be further re-trained for the next task without interfering previous tasks.
The detailed explanation of the proposed LSG is relegated to the appendix-A.1.

3.2 Proposed Framework of Continual Learning via Learnable Sparse Growth (CL-LSG)

Figure 3: CL-LSG framework.

Clearly, our LSG method can work indepen-
dently and serve as a general remedy for expand-
ing the network model in a systematic way. Tak-
ing advantage of our LSG, we next propose an
end-to-end structure-based continual learning
framework, CL-LSG, with sequentially grow-
ing from a small seed network as shown in Fig-
ure 3. Next, we present our framework in the
sequential-task manner.

Learning Task 1: Given the first task, we start from a basic seed network and then gradually grow it
by using the proposed learnable sparse growth method in Equation (2). After training, the current
model will serve as the backbone model for the next new task.

Learning Tasks 2, ..., N: Assume that in task t, the model that can handle task 1 to t− 1 has been
constructed. We follow a two-stage strategy to learn the model for task t:

stage-1: Pick and reuse. Before deciding to grow the model, we want to fully utilize the current
model learned from previous tasks through utilizing two techniques: i) Selective masking: we apply
a learnable soft kernel-wise mask to the preserved model, so as to select/filter the important weights
from previous tasks for current task. ii) Re-training the released weights: benefiting from the
sparsity generated from our LSG method, the preserved model contains sparse weights that can be
re-trained for current task without interfering previous tasks. The detailed explanation of the two
techniques is relegated to the appendix.

stage-2: Grow - LSG. After stage-1 training, if the current accuracy is lower than the target accuracy,
we will adapt the proposed learnable sparse growth method to integrate more but only necessary
features to the current model. Note that, we follow the same target accuracy setup from training full
size model as prior works [17, 3, 1], which is also discussed in Table 1.

4 Experiments
We evaluate our CL-LSG on CIFAR-100 Split 10 tasks, CIFAR-100 Superclass 20 tasks and Mini-
ImageNet Split 10 tasks. The detailed experimental setting, compared methods and training hyper-
parameters are relegated to appendix-A.4.

3

Table 2: Accuracy on CIFAR-100 Superclass 20 tasks
Methods 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Avg Model Size

Scratch 65.8 78.4 76.6 82.4 82.2 84.6 78.6 84.8 83.4 89.4 87.8 80.2 84.4 80.2 52.0 69.4 66.4 70.0 87.2 91.2 78.8 20x

Fine-tune 65.2 76.1 76.1 77.8 85.4 82.5 79.4 82.4 82.0 87.4 87.4 81.5 84.6 80.8 52.0 72.1 68.1 71.9 88.1 91.5 78.6 20x

Grow 67.0 73.8 74.4 75.2 81.4 81.2 78.8 80.4 80.6 85.4 85.8 80.4 81.2 80.6 50.8 68.8 66.4 68.2 84.2 88.4 76.5 1.5x

DEN 66.4 78.0 77.4 78.8 81.6 81.8 76.0 80.4 79.8 85.0 85.2 78.8 83.2 81.6 50.4 71.2 66.8 79.4 85.0 90.2 77.4 2.1x

CPG 67.0 79.6 77.2 82.0 86.8 87.2 82.4 85.6 86.4 89.6 90.0 84.0 87.2 84.8 55.4 73.8 72.0 71.6 89.6 92.8 81.2 1.5x

Ours 67.2 76.8 79.6 81.8 87.4 86.8 84.2 83.8 87.8 89.4 91.0 84.6 87.2 85.0 55.4 73.6 71.2 73.8 89.2 94.6 82.2 1.5x

Table 3: Model size on CIFAR-100 Superclass 20 tasks
Methods 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Model Size

Scratch 1x 2x 3x 4x 5x 6x 7x 8x 9x 10x 11x 12x 13x 14x 15x 16x 17x 18x 19x 20x 20x

Fine-tune 1x 2x 3x 4x 5x 6x 7x 8x 9x 10x 11x 12x 13x 14x 15x 16x 17x 18x 19x 20x 20x

Grow 0.3x 0.4x 0.48x 0.56x 0.65x 0.75x 0.75x 0.83x 0.94x 0.94x 1.12x 1.18x 1.24x 1.24x 1.30x 1.30x 1.38x 1.44x 1.44x 1.5x 1.5x

DEN 1.0x 1.06x 1.13x 1.13x 1.19x 1.25x 1.32x 1.32x 1.40x 1.46x 1.46x 1.55x 1.61x 1.61x 1.61x 1.70x 1.82x 1.90x 2.02x 2.1x 2.1x

CPG 1.0x 1.5x

Ours 0.3x 0.4x 0.48x 0.56x 0.65x 0.75x 0.75x 0.83x 0.94x 0.94x 1.12x 1.18x 1.24x 1.24x 1.30x 1.30x 1.38x 1.44x 1.44x 1.5x 1.5x

4.1 Quantitative Evaluation
Accuracy comparison. The specific accuracy of each task and final average accuracy are illustrated in
Table 2 for CIFAR-100 Sup dataset. The accuracy of training from scratch for each task individually
serves as the target accuracy for our method. In practice, if the accuracy for current task after growing
still cannot reach the target accuracy, it will directly move to next task. As shown in Table 2, compared
with Grow Only methods - PNN and Grow, our method could significantly improve the accuracy for
each task, with an even smaller model size. In addition, compared with Grow-and-prune methods -
DEN and CPG which require one order more training time, our method achieves better results than
DEN on all tasks and CPG on most of tasks. Similar phenomenon can be observed with CIFAR-100
Split and MiniImageNet results as shown in Table 4 and Table 6 in the Appendix. To summarize,
our method consistently show clear accuracy gain against SOTA results on three benchmarks with
the same or even less model size. Compared with CPG, our method could achieve 0.71%, 1.0% and
1.2% accuracy improvement on CIFAR-100 Split, CIFAR-100 Superclass and MiniImageNet Split.

2000 4000 6000 8000 10000 12000 14000
Training time (s)

78

80

82

Av
er

ag
e

ac
cu

ra
cy

 (%
)

CL-LSG
Grow
CPG
DEN

Figure 4: training time and average ac-
curacy comparison between methods

Model size and training time comparison. Table 3 sum-
marize the model size for each task on CIFAR-100 Super-
class. The similar table for CIFAR-100 Split and Mini-
Imagnet split are reported in the appendix. Our method
could guarantee the smallest model size for each task dur-
ing training. Furthermore, it is interesting to observe that
CL-LSG could achieve good accuracy without growing in
certain tasks. For example, CL-LSG does not need to grow
the model on 7th, 10th, 14th, 16th and 19th tasks. Such
phenomenon reveals that the current model trained from
previous tasks has strong generality to the current task.
Moreover, we measure the training time of each method on CIFAR-100 Sup dataset as reported in
Figure 4. Note that, the training time represents the whole time of training all tasks. Compared to the
CPG and DEN, CL-LSG achieves ∼ 1.4× and ∼ 3.5× speedup with higher accuracy.

5 Conclusion
In this work, we propose CL-LSG, a novel end-to-end continual learning framework to dynamically
and sparsely grow a model. Furthermore, to efficiently and appropriately expand network structure
for new task, we develop a learnable sparse growth method eliminating the additional pruning step in
previous structure-based CL method. We conduct extensive experiments to corroborate the superiority
of CL-LSG over current structure-based approaches in multiple CL benchmarks, and characterize the
relationship between growth ratio and accuracy for each task.

Acknowledgement. The work of L. Yang and D. Fan was supported in part by the U.S. National
Science Foundation Grants No. 1931871 and No. 2144751. The work of S. Lin and J. Zhang was
supported in part by the U.S. National Science Foundation Grants CNS-2203239, CNS-2203412,
RINGS-2148253, and CCSS-2203238.

4

References
[1] Tianlong Chen, Zhenyu Zhang, Sijia Liu, Shiyu Chang, and Zhangyang Wang. Long live the

lottery: The existence of winning tickets in lifelong learning. In International Conference on
Learning Representations, 2020.

[2] Chrisantha Fernando, Dylan Banarse, Charles Blundell, Yori Zwols, David Ha, Andrei A Rusu,
Alexander Pritzel, and Daan Wierstra. Pathnet: Evolution channels gradient descent in super
neural networks. arXiv preprint arXiv:1701.08734, 2017.

[3] Ching-Yi Hung, Cheng-Hao Tu, Cheng-En Wu, Chien-Hung Chen, Yi-Ming Chan, and Chu-
Song Chen. Compacting, picking and growing for unforgetting continual learning. Advances in
Neural Information Processing Systems, 32, 2019.

[4] Eric Jang et al. Categorical reparameterization with gumbel-softmax, 2017.

[5] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins,
Andrei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al.
Overcoming catastrophic forgetting in neural networks. Proceedings of the national academy of
sciences, 114(13):3521–3526, 2017.

[6] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

[7] Xilai Li, Yingbo Zhou, Tianfu Wu, Richard Socher, and Caiming Xiong. Learn to grow: A
continual structure learning framework for overcoming catastrophic forgetting. In International
Conference on Machine Learning, pages 3925–3934. PMLR, 2019.

[8] Zhizhong Li and Derek Hoiem. Learning without forgetting. IEEE transactions on pattern
analysis and machine intelligence, 40(12):2935–2947, 2017.

[9] Arun Mallya, Dillon Davis, and Svetlana Lazebnik. Piggyback: Adapting a single network to
multiple tasks by learning to mask weights. In Proceedings of the European Conference on
Computer Vision (ECCV), pages 67–82, 2018.

[10] Amir Rosenfeld and John K Tsotsos. Incremental learning through deep adaptation. IEEE
transactions on pattern analysis and machine intelligence, 42(3):651–663, 2018.

[11] Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick,
Koray Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. arXiv
preprint arXiv:1606.04671, 2016.

[12] Ghada Sokar, Decebal Constantin Mocanu, and Mykola Pechenizkiy. Spacenet: Make free
space for continual learning. Neurocomputing, 439:1–11, 2021.

[13] Tom Veniat, Ludovic Denoyer, and MarcAurelio Ranzato. Efficient continual learning with mod-
ular networks and task-driven priors. In International Conference on Learning Representations,
2021.

[14] Shipeng Yan, Jiangwei Xie, and Xuming He. Der: Dynamically expandable representation for
class incremental learning. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 3014–3023, 2021.

[15] Li Yang, Zhezhi He, Junshan Zhang, and Deliang Fan. Ksm: Fast multiple task adaption via
kernel-wise soft mask learning. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 13845–13853, 2021.

[16] Jaehong Yoon, Saehoon Kim, Eunho Yang, and Sung Ju Hwang. Scalable and order-robust
continual learning with additive parameter decomposition. In International Conference on
Learning Representations, 2020.

[17] Jaehong Yoon, Eunho Yang, Jeongtae Lee, and Sung Ju Hwang. Lifelong learning with
dynamically expandable networks. In International Conference on Learning Representations,
2018.

5

[18] Xin Yuan, Pedro Henrique Pamplona Savarese, and Michael Maire. Growing efficient deep
networks by structured continuous sparsification. In International Conference on Learning
Representations, 2021.

Checklist

The checklist follows the references. Please read the checklist guidelines carefully for information on
how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or
[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. For example:

• Did you include the license to the code and datasets? [Yes] See Section 4
• Did you include the license to the code and datasets? [Yes] The data and code are proprietary
• Did you include the license to the code and datasets? [N/A]

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] See appendix
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [No] Will be released
if published

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See section 4.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [No]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See appendix

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes] See appendix
(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [No]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

6

A Appendix

A.1 Understanding Learnable Sparse Growth with Attentive Sparse Mask

0 20 40 60 80 100
Epochs

30

40

50

60

70

Te
st

 A
cc

ur
ac

y
(%

)

Learnable grow
Learnable sparse grow

0 20 40 60 80 100
Epochs

1.0

1.5

2.0

2.5

Te
st

 L
os

s

Learnable grow
Learnable sparse grow

0 20 40 60 80 100
Epochs

0.00

0.05

0.10

Gr
ow

 ra
tio

 (%
)

Learnable grow
Learnable sparse grow

Figure 5: Training curve of learnable growth [18] (green) v.s. our learnable sparse growth (blue) on
one sample task of CIFAR-100 Superclass benchmark using VGG16-BN model. Left: test accuracy
curve; Middle: test loss curve; Right: grow ratio curve.

To better understand the advantage of introducing the attentive-mask ma for enabling learnable
sparse growth, we further analyze the learning performance of Equation (2) from the viewpoint of
optimization, which is summarized in the following Proposition A.1.
Proposition A.1. Denote L(w∗

1 , (m
g)∗1, (m

a)∗1) = minw,mg,ma L(w,mg,ma;x) and
L(w∗

2 , (m
g)∗2) = minw,mg L(w,mg;x). It can be shown that

L(w∗
1 , (m

g)∗1, (m
a)∗1) ≤ L(w∗

2 , (m
g)∗2).

Remarks. Proposition A.1 indicates that the proposed LSG method can always achieve lower loss
values compared to the traditional learnable growth. This performance improvement can be further
interpreted from the following perspective: The conventional learnable growth in Equation (1) is
mathematically equivalent to the following reformulation by multiplying an identity tensor ⊮:

L(w,mg;x) = L(f({w ⊙mg ⊙ ⊮};x),y) + λ||mg||0. (3)

That is to say, Equation (1) implicitly puts a constraint on ma that ma = ⊮, whereas in Equation (2)
the attentive-mask ma can be optimized over a larger space with more degree of freedom. Thus,
to summarize, compared with prior growth method [18], which works for single task learning, our
contribution lies in being the first to propose an efficient continual learning framework with learnable
sparse growth as the network growing technique. Moreover, as explained in above technical details,
our LSG method mainly incorporates a new attentive sparse mask that has never been used in earlier
works, and brings multiple benefits in CL setting, including: 1) it mitigates the unstable training on
relatively smaller CL new task dataset; 2) it reduces the overfitting issue and achieves better accuracy
with the same model size; 3) the sparse weights from attentive mask for current task can be further
re-trained for the next task without interfering previous tasks.

A.2 Selective Masking on Previous Tasks

To mitigate catastrophic forgetting and utilize the useful information from previous tasks, we first
freeze the model weights, and only learn a binary mask to select the important weights for current
task. Inspired by [15], we apply a learnable kernel-wise mask in our CL-LSG framework, named as
selective-mask ms, to maximize the utilization of the preserved weights learned from previous tasks,
formulated as:

Lt(wt;xt) = Lt(f({wt−1 ⊙ms
t};xt),yt) (4)

where wt−1 denotes the preserved weights for task t− 1 including all the weight from task 1 to t− 1.
The conventional way [9] of generating the binary trainable mask is to train a learnable real-valued
mask (mr) followed by a hard threshold function (e.g., sign function) to binarize it. Different from
that, in this work, we adopt a method to better estimate the gradient by using Gumbel-Sigmoid trick.
First, we relax the hard threshold function to a continual sigmoid function σ(mr). Then, to learn the
binary mask, we leverage the Gumbel-Sigmoid trick, inspired by Gumbel-Softmax [4] that performs
a differential sampling to approximate a categorical random variable. Since sigmoid can be viewed
as a special two-class case of softmax, we define p(·) using the Gumbel-Sigmoid trick as:

p(mr) =
exp((logπ0 + g0)/T)

exp((logπ0 + g0)/T) + exp((g1)/T)
, (5)

where π0 represents σ(mr), g0 and g1 are sampled from Gumbel distribution. The temperature
T is a hyper-parameter to adjust the range of input values, where choosing a larger value could

7

avoid gradient vanishing during back-propagation. Note that the output of p(mr) becomes closer
to a Bernoulli sample as T is closer to 0. To represent p(mr) as binary format mb, we use a hard
threshold (i.e., 0.5) during forward-propagation of training.

A.3 Re-train the Released Weights

As a byproduct of the proposed LSG method, the preserved model contains unused weights (i.e.,
attentive-mask as zero) that could be further re-trained for the current task without any impact on
previous tasks. Specifically, let wt−2 denotes the preserved weights for task t− 2 including all the
weight from task 1 to t− 2 and wt−2:t−1 denote the grown weights for task t− 1. As we adapt a
new kernel-wise attentive-mask ma

t−1 for the grown weights, wt−2:t−1 ⊙ma
t−1 is utilized by task

t− 1, while the rest wt−2:t−1 ⊙ (⊮−ma
t) can be released to learn the current task t, where ⊮ is an

identity tensor.

In addition, it is worthy to note that these two techniques, selective masking and re-train the released
weights, work independently on different parts of the weights, and hence can be jointly optimized in
a single training process. The loss function can be formulated as:

Lt(wt;xt) = Lt(f({wt−2,wt−2:t−1 ⊙ (⊮−ma
t−1)};xt),yt). (6)

As shown in Figure 3, after ‘Pick and reuse’ stage through selective masking and re-training the re-
leased weight, if the current accuracy requirement is met, the network does not need grow. Otherwise,
it will grow the current model wt−1 using the proposed learnable sparse growth method to expand the
task-specific features. Specifically, we fix wt−1 and learn the grown-mask mg

t and attentive-mask
ma

t for current task t by following Equation (2). Meanwhile, for the preserved weights, we also
adopt the selective masking to re-train the selective-mask and the released weights at the same time.

A.4 Experimental Settings.

We evaluate our CL-LSG on multiple datasets against state-of-the-art continual learning methods.
1) CIFAR-100 Split. CIFAR-100 [6] consists of images from 100 generic object classes. We split
the classes into 10 group, and consider 10-way multi-class classification in each group as a single
task. We use training/validation/test splits of 4000/1000/1000 samples. We use a modified version of
LeNet-5 with 20-50-800-500 neurons as the base model and train 20 epochs for each task sequentially.
2) CIFAR-100 Superclass. We divide the CIFAR-100 dataset into 20 tasks. Each task has 5 classes,
2500 training images, and 500 testing images. In the experiment, VGG16-BN model (VGG16 with
batch normalization layers) is employed to train the 20 tasks sequentially. 3) MiniImageNet Split.
We divide the MiniImageNet dataset into 20 tasks. Each task has 5 classes, 2375 training images and
500 testing images. We use ResNet18 to train the 20 tasks sequentially.

A.4.1 Comparison with Competing Methods.

To test the efficacy of our method, we compare it with several representative methods using the same
task sequence in three categories: 1) Baselines: We adapt two regular training schemes as follows and
select the best accuracy as the target for our method. (i) scratch: we train the model from scratch for
each task individually using the dataset of current task; (ii) fine-tune: we train the model from scratch
for the first task only and then fine-tune it for the rest tasks individually. 2) Grow only: This method
only grows the model for each task without affecting the pre-trained backbone part during training.
We compare with two representative works, PNN [8] which linearly grows the model for each task,
and Grow [18] which grows the model by learnable mask as mentioned earlier. 3) Grow-and-prune:
This method gradually grows and prunes the backbone model for each new task. We choose two
representative works for comparison, DEN [17] and CPG [3]. In addition, we also compare with
APD [16], which grows the parameter size through involving the task-specific parameters with L1
norm constrain.

A.4.2 Detailed training hyper-parameters

In all experiments, the initial seed network is set to be 1/8 of the full size network, by selecting 1/8
of the channels uniformly for each layer. The experiments are conducted similar training settings
as CPG [3]. Specifically, for CIFAR-100, we use the SGD optimizer for weight parameters with
0.01 initial learning rate, and Adam optimizer for the learnable mask with 5e-4 initial learning rate.

8

We run each task on 50 epochs with batchsize 32. The hyper-parameter λ is set to 1e-4 for all the
experiments. We conduct the all the experiments by using a single Nvidia RTX 5000 GPU. For a
fair comparison, all the methods are trained on the single NVIDIA Quadro RTX 5000 GPU with the
same batch size (i.e, 32).

A.5 Results on CIFAR-100 Split 10 tasks

Table 4: Accuracy on CIFAR-100 Split 10 tasks
Methods 1 2 3 4 5 6 7 8 9 10 Avg Model Size

Scratch 62.4 57.0 67.8 64.4 67.8 67.2 68.6 67.6 61.4 69.6 63.75 10x

PNN 58.2 45.6 59.4 46.8 53.2 58.0 61.2 60.4 53.8 62.4 55.90 1.7x

Grow 56.4 45.4 56.6 47.8 53.2 55.6 61.8 57.4 53.2 59.8 54.72 1.3x

DEN 61.3 49.8 60.2 49.4 54.5 57.1 64.3 62.7 55.1 66.5 58.09 1.8x

CPG 59.4 55.2 64.8 57.4 59.6 59.4 66.2 62.8 57.6 65.4 60.12 1.3x

APD 55.1 52.5 62.3 56.7 61.4 58.2 63.4 63.1 54.8 64.2 57.54 1.3x

Ours 57.6 53.4 65.2 58.8 60.4 60.6 65.4 62.2 58.0 66.4 60.83 1.2x

Table 5: Model size on CIFAR-100 Split 10 tasks
Methods 1 2 3 4 5 6 7 8 9 10

Scratch 1x 2x 3x 4x 5x 6x 7x 8x 9x 10x

PNN 1x 1.08x 1.16x 1.24x 1.32x 1.40x 1.48x 1.54x 1.62x 1.7x

Grow 0.5x 0.64x 0.78x 0.86x 0.92x 0.99x 1.06x 1.16x 1.24 1.3x

DEN 1.0x 1.2x 1.46x 1.46x 1.64x 1.64x 1.8x 1.8x 1.8x 1.8x

CPG 1.0x 1.3x 1.3x 1.3x 1.3x 1.3x 1.3x 1.3x 1.3x 1.3x

APD 1.0x 1.05x 1.10x 1.13x 1.16x 1.19x 1.23x 1.26x 1.28x 1.3x

Ours 0.5x 0.64x 0.78x 0.78x 0.84x 0.90x 0.90x 1.10x 1.15x 1.2x

A.6 Results on miniImageNet dataset

Table 6: Accuracy on miniImageNet split 20 tasks

Methods 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Avg Model Size

Scratch 66.0 69.2 65.4 63.2 70.6 73.0 67.0 64.6 65.8 64.4 66.2 68.2 63.2 70.0 66.2 69.6 70.2 66.8 68.6 65.2 67.5 20x

Grow 63.8 61.8 60.0 57.4 63.6 65.2 57.0 56.4 58.4 56.0 57.4 60.6 53.8 65.4 61.8 62.8 58.4 59.4 64.0 55.8 60.1 1.5x

DEN 65.4 65.0 64.6 60.0 64.8 68.6 62.4 59.8 59.4 60.2 59.4 64.6 55.8 63.8 63.4 60.4 65.2 59.6 65.8 59.2 62.5 1.9x

CPG 64.6 68.6 64.2 60.4 65.0 69.2 63.8 62.6 62.2 63.4 66.0 65.2 59.8 67.0 63.2 65.8 61.6 64.0 67.4 60.4 64.2 1.5x

Ours 65.8 68.2 65.4 61.6 68.8 71.2 63.8 63.6 64.2 62.8 66.4 66.2 60.6 66.0 65.2 66.8 63.2 65.6 65.8 63.4 65.4 1.5x

Table 7: Model size on miniImageNet split 20 tasks

Methods 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Model Size

Scratch 1x 2x 3x 4x 5x 6x 7x 8x 9x 10x 11x 12x 13x 14x 15x 16x 17x 18x 19x 20x 20x

Grow only 0.35x 0.44x 0.52x 0.60x 0.65x 0.65x 0.73x 0.80x 0.88x 0.95x 1.14x 1.14x 1.22x 1.28x 1.28x 1.34x 1.40x 1.40x 1.45x 1.5x 1.5x

DEN 1.0x 1.05x 1.11x 1.16x 1.16x 1.23x 1.39x 1.39x 1.45x 1.45x 1.50x 1.55x 1.59x 1.59x 1.64x 1.64x 1.70x 1.76x 1.82 1.9x 1.9x

CPG 1.0x 1.5x

Ours 0.35x 0.44x 0.52x 0.60x 0.65x 0.65x 0.73x 0.80x 0.88x 0.95x 1.14x 1.14x 1.22x 1.28x 1.28x 1.34x 1.40x 1.40x 1.45x 1.5x 1.5x

A.7 CL-LSG Algorithm

A.8 Ablation Study and Analysis

Table 8: Ablation study on CIFAR-100 Superclass 20 tasks
Methods 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Avg.
Grow only 67.0 73.8 74.4 75.2 81.4 81.2 78.8 80.4 80.6 85.4 85.8 80.4 81.2 80.6 50.8 68.8 66.4 68.2 84.2 88.4 76.5
+Sel-mask +0.0 +2.0 +3.4 +4.0 +3.4 +4.2 +3.6 +2.0 +3.8 +3.0 +3.8 +3.0 +3.6 +3.4 +2.8 +4.0 +3.2 +3.8 +3.0 +3.6 +3.7
+LSG +0.2 +0.6 +1.0 +1.8 +1.4 +0.8 +1.2 +0.6 +2.2 +0.6 +1.0 +0.6 +2.0 +0.4 +1.4 +0.6 +0.6 +1.0 +1.4 +1.6 +1.3
+Re-train +0 +0.4 +0.8 +0.4 +0.4 +0.6 +0.6 +0.8 +1.0 +0.4 +0.8 +0.6 +0.4 +1.2 +0.4 +0.2 +1.0 +0.8 +0.6 +1.0 +0.7

Ours 67.2 76.8 79.6 81.8 86.8 86.8 84.2 83.8 87.8 89.4 91.0 84.6 87.2 85.0 55.4 73.6 71.2 73.8 89.2 94.6 82.2

The Effect of each technique in CL-LSG. We study the effectiveness of each technique in CL-LSG
on CIFAR-100 Superclass setting. As shown in Table 8, we consider four different combinations to

9

Algorithm 1 CL-LSG
Input: Given a pre-defined model with initialized weights w, grown-mask mg , kernel-wise attentive-

mask ma, selective-mask ms

if task t == 1 then
Set a target accuracy for task 1
Apply the attentive-mask ma

1 and grown-mask mg
1 to sparse grow the current model

else
for task t = 2 ... T do

Set a target accuracy for task t
Apply the selective-mask ms

t for fixed wt−1, and retrain the released weights wt−1

if Current accuracy < Target accuracy then
Apply the attentive-mask ma

t and grown-mask mg
t to sparse grow the model wt−1 to

obtain wt
else

Set current model as wt

end
end

end

perform this ablation study. 1) Grow only: only grow the model for each task by learnable mask [18],
without any updating on the pre-trained part; 2) Sel-mask: adapt the selective masking technique
on top of the grow only; 3) LSG: replace the grow only with our proposed learnable sparse growth;
4) Re-train: further add the re-training of the released sparse weights technique to show the final
version. First, it can be seen that the selective-masking method largely improves the accuracy for
each task, which shows that simply masking unimportant weights could achieve high adaption ability.
Second, our proposed LSG method can not only improve the accuracy, but also reduce the model size
by involving kernel-wise sparsity. Last, benefiting from LSG which masks the room to re-train the
released sparse weights, it could further improve 0.7% accuracy on average for all tasks.

A.9 Proof of Proposition 1

The conventional learnable growth as shown in Equation (1) is equal to multiply an identity tensor:
L(w,mg,ma = ⊮;x)

=Lt(f({w ⊙mg ⊙ ⊮};x),y) + λ||mg||0.
For ease of exposition, let w̃ = (w,mg). Denote

(w̃∗
1 , (m

a)∗1) = argminL(w̃,ma);

w̃∗
2 = argminL(w̃,ma = ⊮).

Then, it follows that
L(w̃∗

1 , (m
a)∗1)

≤min{L(w̃,ma|ma = ⊮),L(w̃,ma|ma ̸= ⊮)}
for any w̃,ma.

For w̃ = w̃∗
2 ,

• if there does not exist any ma ̸= ⊮, such that L(w̃∗
2 ,m

a|ma ̸= ⊮) ≤ L(w̃∗
2 ,m

a|ma =
⊮), then

L(w̃∗
1 , (m

a)∗1)

≤min{L(w̃,ma|ma = ⊮),L(w̃,ma|ma ̸= ⊮)}
≤min{L(w̃∗

2 ,m
a|ma = ⊮),L(w̃∗

2 ,m
a|ma ̸= ⊮)}

=L(w̃∗
2 ,m

a = ⊮);

10

• if there exists some ma
2 ̸= ⊮, such that L(w̃∗

2 ,m
a
2) ≤ L(w̃∗

2 ,m
a = ⊮), then

L(w̃∗
1 , (m

a)∗1)

≤min{L(w̃,ma|ma = ⊮),L(w̃,ma|ma ̸= ⊮)}
≤min{L(w̃∗

2 ,m
a = ⊮),L(w̃∗

2 ,m
a
2}

=L(w̃∗
2 ,m

a
2)

≤L(w̃∗
2 ,m

a = ⊮).

Therefore, we can conclude that L(w̃∗
1 , (m

a)∗1) ≤ L(w̃∗
2 ,m

a = ⊮).

11

	Introduction
	Related Work
	Methodology
	Proposed Learnable Sparse Growth (LSG) with Attentive Sparse Mask
	Proposed Framework of Continual Learning via Learnable Sparse Growth (CL-LSG)

	Experiments
	Quantitative Evaluation

	Conclusion
	Appendix
	Understanding Learnable Sparse Growth with Attentive Sparse Mask
	Selective Masking on Previous Tasks
	Re-train the Released Weights
	Experimental Settings.
	Comparison with Competing Methods.
	Detailed training hyper-parameters

	Results on CIFAR-100 Split 10 tasks
	Results on miniImageNet dataset
	CL-LSG Algorithm
	Ablation Study and Analysis
	Proof of Proposition 1

