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Abstract

Poor sample efficiency plagues the practical applicability of deep reinforcement
learning (RL) algorithms, especially compared to biological intelligence. In order
to close the gap, previous work have proposed to augment the RL framework
with an analogue of biological episodic memory, leading to the emerging field of
“episodic control". Episodic memory refers to the ability to recollect individual
events independent of the slower process of learning accumulated statistics, and
evidence suggests that humans can use episodic memory for planning. Existing
attempts to integrate episodic memory components into RL agents have mostly
focused on the model-free domain, leaving scope for investigating their roles under
the model-based settings. Here we propose the Episodic Memory Module for
World Models (EMWM) to aid learning of world-model transitions, instead of
value functions for standard Episodic-RL. The EMWM stores latent state transi-
tions that have high prediction-error under the model as memories, and uses linearly
interpolated memories when the model shows high epistemic uncertainty. Memo-
ries are dynamically updated with a timescale reflecting their continual surprise
and uncertainty. Implemented in combination with existing world-model agents,
the EMWM produces a boost in performance over baseline agents on complex
Atari games such as Montezuma’s Revenge. Our results indicate that the EMWM
can temporarily fill in gaps while a world model is being learned, giving significant
advantages in complex environments where such learning is slow.

1 Introduction

The neuroscience-inspired concept of episodic memory (EM) [1–4] has been proposed as a potential
solution to improving the sample inefficiency of Deep RL agents [4]. This concept refers to the
recollection of personal experiences and is thought to be of critical importance for control at very
early stages of learning [1]. Mathematical models of EM leverage non-parametric statistics - through
single-event recalls - instead of the slower-to-learn accumulated statistics of semantic memory.
Neuroscience studies suggest that EM in mammals is beneficial for control, and it is also used in the
process of modelling the environment’s dynamics, often referred to as ‘world models’ in RL [5, 6].

This has inspired new approaches in the field of Episodic-RL that integrate EM into model-free RL
[4], where policy updates are based on the non-parametric approximation of value function, given
the EM component. Despite the success of this method, there have been few prior works [7–9]
that address the combination of episodic control and model-based RL, which is often interpreted
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as the more sample-efficient alternative to model-free methods. This has been labeled as episodic
model-based control (EMBC) [10]. In this work, we propose the Episodic Memory Module for World
Model Transitions (EMWM), an architecture that integrates EM with a state-of-the art world model,
the Recurrent State-Space Model (RSSM) from Dreamer-V2 [11], to assist the latent state transitions
at low experience and optimize sample efficiency.

2 Background

Standard Episodic-RL architectures [2, 3, 12, 4] estimate the state-action value Q using a buffer of
pre-recorded memories. While the agent interacts online with the environment, it stores all visited
states as keys to an action-specific dictionary and the associated state-action value Q as the dictionary
value. Q(st, at) =

∑H
i=0 rtγ

i is stored as the sum of discounted rewards over a fixed horizon with
length H . Instead of utilising a single parametric estimate of the action values, the episodic-RL
models utilise a weighted average of similar state-action values retrieved from the cached episodic
memory buffer, Q̂(s, a) =

∑
i wiQi(si, ai) [12]. The policy evaluation and policy improvement are

based on these values under the standard model-free RL context. More recently, new Episodic-RL
architectures have been proposed that perform episodic recalls beyond value approximation [13–
15] and therefore we will refer to Episodic-RL as a general term referring to methods leveraging
non-parametric mappings of possibly old events within an RL algorithm.

World models in model-based RL entail the usage of latent state-space models as the dynamics model
for projecting the direct modelling of transition dynamics in the observable space down to some
low-dimensional latent space. The associated RL agent operates on the latent space, and is trained
through generative predictions of future latent states and rewards. Dreamer-V2 is a prominent work
in this field [11], leveraging a generative recurrent world model (RSSM [16]) when learning an actor
and value networks (actor-critic) by backpropagating their analytical gradient through the model
dynamics. The training of the world model in Dreamer-V2 is shown graphically in Figure 1A.

Figure 1: A: Training of the world model in DreamerV2. The model resembles the features of a sequential
VAE, and is trained by minimising the variational free energy. ẑt and zt are the predicted prior and posterior
latent codes at time t, respectively. ht represents the deterministic hidden state of the GRU [17] in the RSSM.
Graphical illustration adopted from [11], maintaining consistency in colours. B: Graphical illustration of RSSM
with incorporation of EMWM mapping.
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3 Methods

3.1 Episodic Memory Module for World Model Transitions (EMWM)

EMWM here is defined as a memory buffer that records individual state transitions that were marked
as “surprising”, and recalls these transitions in order to substitute semantic memory in the event of
high epistemic uncertainty. This buffer is implemented in the form of a dictionary, whose entries use
as a “key” the current latent state lt = (zt, ht) and as a value the predictive prior distribution over the
next state p(zt+1|zt, ht) = ẑt+1 as shown in Figure 1B.

Figure 2 summarizes the process of memory formation (storage) and recall (prediction) using the
EMWM’s dictionaries. EMWM employs action-dependent dictionaries, in order to estimate the
complete prior ẑt+1 ≈ p(zt+1|zt, at = a),∀a ∈ A. Therefore, one limitation of the current version
of EMWM is that it can only be implemented in environments with discrete action spaces. These
dictionaries are populated as the agent interacts with the environment, while dictionary lookups are
used to estimate the next latent state transition prior when predicting future states, either for planning
or dreaming-based policy training. Dictionary lookups are performed by calculating the weighted
average ( kernel k(l, li) = 1

∥l−li∥2
2+δ

) of the k=5 nearest neighbours, with respect to a given state.

:

= 

Deterministic neural
networks mapping

Identical vectors 
(1:1 mapping)

keys values

Estimate next priorWrite memory for 

:

:
:

Figure 2: EMWM architecture for memory formation and recall, given an action at.

One might be sceptical that latent state representations learnt from accumulated statistics (analogous
to semantic memory) would be stored in EM. However, episodic information is often defined with
respect to semantic knowledge, which can be an important determinant of performance [18] and
hippocampal activity [19] in episodic memory experiments. Here, the one-shot learning of episodic
information (i.e. storing a specific transition between latent states) occurs on a much faster timescale
than the learning of semantic (i.e. latent state) representations themselves. Nonetheless, after enough
further learning has occurred, the stored and current representations may no longer align, effectively
losing access to very old memories. Such a problem might underlie a phenomenon called infantile
amnesia, which is the inability to retrieve EM before the age of two to four years old [20]. This
motivates the importance of how is our EM module updated and used over time which is presented in
the following section.

3.2 EMWM integration with Dreamer-V2

It has been suggested that leveraging EM is most useful during surprising events [1]. This insight
can also be applied to our framework, if the non-parametric statistics of EMWM are used when the
agent’s predicted state is surprising and, therefore, the prediction of the neural networks will most
likely be poor. Indeed, stochastic gradient descent optimisation requires the use of small learning
rates [3]. Due to the global approximation nature of neural networks, high learning rates cause
catastrophic interference. In other words, this means that new experience can only be incorporated
into a neural network at a slow pace. States that are still “surprising” will not be accommodated
by the global function approximation yet. Therefore, we only use EMWM for prediction when the
neural networks are uncertain and we only store and keep the most surprising memories over time.

We capture uncertainty using the ensemble-based epistemic uncertainty estimate [21, 22]. The
xpred = 5% most uncertain states (lt, at) are predicted by EMWM instead of the world model. The
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amount of EM we can store is limited by computational (or neuronal) resources. Here, we store the
xstorage = 1 % most surprising states and their respective surprise. Surprise is captured using the
KL divergence between the prior and posterior (which is given during observations in world model
training) which we denote KLobs. We substitute the least relevant memories where relevance is
inspired by Forgetting curves [23] in the brain and their recall probabilities R = e−t/S where t is
the time step, S is a stability constant, which we capture by S = KLobs × xscaling. Whenever a
memory is used for prediction, we consider memory consolidation [24], and we reset it to R = 1.
This provides the ability to only keep memories that were very surprising as well as consolidated over
time. Finally, to ensure that neural networks take over a given state transition after enough experience,
we introduce a final update process to the EMWM. As research suggests, the brain replaces EM with
semantic memory mappings when enough experience has been encountered [1, 25]. Therefore, for
each xupd = 100 time step, we evaluate the epistemic uncertainty for all existing entries in EMWM
and delete the xdel = 0.1 % most "certain" memory transitions. This ensures that even memories
which were highly surprising at storage, but now accommodated by the global function approximation
from neural networks, are still deleted. Algorithm 1 describes the generic scheme of how EMWM
can be used in model-based RL for imagination.

Algorithm 1 Semi-parametric training of EMWM

Initialize policy πϕ, predictive world-model pθ , dataset D and the EMWM, Ψ =
(R, at, zt, zt+1)

N
n=1.

for t in range(T) do
Add experience to D by interacting with the environment using πϕ

Draw B data sequences (at, ot, rt, ot+1) ∼ D

Rn× = e
−1

KLn
obs

×xscaling ∀n ∈ {0, 1...N}
while Training world-model pθ on B(i)∀i ∈ B do

KLobs
(i) = KL(pθ( ˆzt+1|zt, at)(i)||pθ(zt+1|zt, at, ot+1)

(i))

if KLobs
(i) > KLobs top xth

storage-percentile then

R(i) = e
−1

KL
(i)
obs

×xscaling

Delete (at, zt, zt+1,KLobs)
n in Ψ where n = argminnR

N
n=1

Store (at, zt, zt+1,KLobs)
(i) in Ψ

end if
end while
Imagine C trajectories (zτ , aτ )

t+H
τ=t

while Training policy πϕ on C do
if Φi > Φthresh∀i ∈ C (where thresh is the xth

pred-percentile highest Φj∀j ∈ C) then
Replace the prediction pθ(zτ+1|zt, at) with

∑
n z

n
t+1 × similarity(zτ , z

n
t |at), for

n = 1, . . . , N
end if

end while
if t % xupd == 0 then

Compute Φn, for n = 1, . . . , N
Set top xdel% of the memories (with respect to Φn) in Ψ to R = 0

end if
end for
where:

Φ = Disagreement =
∑M

m1=1 KL
{
pθm1

( ˆzt+1|zt, at) || M−1
∑M

m2=1 pθm2
( ˆzt+1|zt, at)

}
N = Size of EMWM dictionnary
M = Number of Ensemble Units
T = Total number of training steps
H = Horizon
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4 Experiments

We investigated whether our proposed EMWM-DreamerV2 model improves the sample efficiency of
learning over the baseline vanilla DreamerV2 agent on different Atari games [26]. The aim of the
empirical studies is to show that our EMWM module optimizes the DreamerV2 transition predictions
and, thus, lead to better policy training with “dreamed" roll-out trajectories. We evaluate on 6 selected
Atari tasks, the implementation details can be found in Appendix B.

In Figure 3, we observe a substantial performance increase over DreamerV2, especially over the
initial frames for three of the evaluated environments: River Raid, HERO and Montezuma-revenge,
which interestingly are all exploration-demanding environments with extremely sparse rewards. The
preliminary results cohere with our hypothesis that replacing prediction targets in model-training with
linear interpolation of past experiences alleviates the heteroscedasticity and poor accuracy introduced
by the parametric predictions, and is mostly reflected in the early stage of training.
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Figure 3: Evaluation return on selected Atari games. All evaluations are averaged over 5 random seeds.

5 Discussion and Future work

We have introduced a new way to leverage the properties of episodic memory in RL, namely for
World-Model imaginations. This model serves as a proof of concept and many choices were only
heuristics inspired by properties of human episodic memory. Nonetheless, the model has shown
some success with sample efficiency improvements on complex environments. This highlights the
importance for future research to gain more intuition on how to balance between semantic and
episodic memory. This balance seems crucial for optimum learning from fast non-trivial predictions
from non-parametric statistical mappings and slower to learn but asymptotically more performant
accumulated statistics. This model’s promise relies on how its choices of retrieval, storage and
deletion of EM balance this memory system with the learnt accumulated statistics.

However, many aspects could be improved in future work. First, more analysis is required to gain
better understanding of all the hyperparameter and architectural choices. This can be done with
ablation studies, evaluations on other model-based RL agent (not only dreamer-v2) and different
environments. This would provide a clearer picture of the potential of this proof of concept for which
our analysis was limited due to lack of computational resources. One of the main focus but also
maybe one of the most challenging one should be to understand how to gain intuition of the effect of
forgetting curves, and how to modulate the proportion of predictions taken from EM with experience
(the balance between semantic and episodic memory). Finally, this EMWM architecture is robust in
terms of what it can combine with and therefore could be used across various different RL architecture
for optimized sample-efficiency. One strong limitation is the retrieval time for predictions, and a
hierarchical structure [27] could greatly improve this issue by only attending to several memories
instead of looking at the entire EM.
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A Additional Analysis

In this section, we present additional results for EMWM-Dreamer. First, we investigated what metric
could explain the improvements in sample efficiency. One interesting result, especially for HERO
as shown in Figure 4, is the difference in Actor Loss. EMWM seem to exhibit larger actor loss for
these environments, possibly meaning its latent predictions produce more accurate predictive latent
state and reward signals leading to non-trivial policy gradients. Indeed, for HERO (which also has
the most significant sample efficiency with respect to Dreamer-V2), the actor loss is larger by orders
of magnitude.

Hero Montezuma Revenge River Raid

Steps (x106) Steps (x106) Steps (x106)
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Figure 4: Actor Loss for environments where EMWM is significantly more sample efficient

We then investigated the difference in dream rendering between both models as shown in Figure 5.
This experiment aimed to understand key differences from environments with extremely sparse
rewards. We performed the same sequence of actions for 15 steps for both standard Dreamer-V2
and with EMWM after 2.5 million frames of learning (we used xscaling = 1000). However, we only
showed observations to the agents for the 5 first steps and then only performed the remaining 10
actions within their dreaming transitions. We tracked online environment interactions during the
full 15 steps to have a ground truth baseline. We show the last 5 predictions using the world-model
decoder and the first 5 online observations for all models. Interestingly, we notice a substantial
difference between the two models. The main observation is that the agent location and actions is a
lot more faithful to the ground truth with EMWM. The agent effectively stays stuck on the ladder
in Dreamer-V2 predictions, whereas it can generate meaningful behaviours such as jumping with
EMWM, even though both perform the same exact actions in the initial 5 states.
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Figure 5: Dream rollout comparison in Montezuma-revenge

Figure 6 show both the surprise and uncertainty (disagreement ϕ of deep-ensembles) over time.
More specifically, we plotted the top 1% surprise and 5% uncertainty replacements over 5 random
seeds on H.E.R.O (presented in Section 5 with xscaling = 103). Interestingly, we see that both the
surprise and uncertainty have a similar behavior. They both highly decrease at the beginning (until
approximately 600k steps) and then stabilizes to a more constant (non-zero) behavior. This highlights
our expectation that during the early stage of training, “surprise" states are frequently encountered
and the world model prediction exhibits high uncertainty. Additionally, the fact that the average
surprise and uncertainty never reaches 0 suggests that the EMWM could aid learning even beyond
the early stage of training by alleviating the negative impacts induced by undertraining is certain
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parts of the environment. Therefore, these experiments indicate that the prediction replacements from
EMWM, which we suggested should be decreased over time for future work, should not be decreased
to 0%.
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Figure 6: Top 5% disagreements (a) and 1% surprises (b) over time for H.E.R.O with each colour representing a
different seed.

We also conducted a preliminary ablation study with different replacement proportion on H.E.R.O.
We used as baseline runs from Section 5, EMWM-Dreamer which showed highest performance
(xpred = 5% and xscaling = 1000) shown in Figure 7. We completed the plot with three different
runs xpred ∈ {1%, 10%, 100%} with fixed xscaling = 1000. We also included a run with a simpler
EM forgetting process (First in First Out as opposed to using our more involved forgetting process).
All runs were performed for 5 different seeds. We can see that 1% and 10% behave similarly to the
one with simpler EM forgetting process and suggest that for H.E.R.O, the choice of xpred = 5%
seems coherent with performance. It also suggests that our more involved forgetting process based on
heuristics seems relevant at least on the Hero environment. Interestingly, xpred = 100% which means
the prior predictions are fully using EM, perform terribly, highlighting again the need to balance well
between accumulated statistics and EM mappings.

Figure 7: Ablation study on H.E.R.O

Finally, Table 1 show the comparison of performance on a longer time scale (107 training steps)
with existing Episodic-RL models on the 4 selected Atari environments (MFEC [2], NEC [3],
MBEC++ [8]). Note that the performance statistics for these baseline algorithms are shown directly
as reported in their respective original works, and the evaluation of EMWM-Dreamer and Dreamer
are based on one seed due to computational limitations on our side. As explained in Section 5, it
is worth noting that the additional baselines fall under the model-free RL category and therefore
expected to acquire better performance asymptotically. For instance, in H.E.R.O, EMWM-Dreamer
converges very fast to this magnitude ( 1M frames) and does not improve given additional training.
This could be explained by the fact that EMWM-Dreamer uses an actor-critic controller, and Policy
gradient-based RL algorithms are well-known to be prone to local minimas as opposed to value-based
RL algorithms. Indeed, we see that after 10M frames, both Dreamer-v2 and EMWM-Dreamer have
very similar performance across the 4 presented games even though we showed in Section 4 that
improved sample efficiency is achieved at lower experience. This highlights again the intuition that
EMWM usage should be diminished over time for optimized results.
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MFEC [2] NEC [3] MBEC++ [8] DREAMER [11] EMWM-DREAMER

FISHING DERBY -90.3 -72.2 17.6 63 59
H.E.R.O. 14767.7 16265.3 12148.5 13495 13775
MONTEZUMA REVENGE 76.4 42.1 0 400 500
RIVER RAID 4195.0 5498.1 10656.4 6880 7470

Table 1: Performance after 1× 107 training steps of EMWM-Dreamer and the baseline agents on selected Atari
games. The best performance for each game shown in bold [3, 8].

B Implementation Details

The most difficult EMWM hyperparameter to choose was the xscaling . This has a significant impact
to the behavior of the forgetting recall curve as it scales the exponential decay, while different
Atari environments have different timescales. We tried both xscaling ∈ {1000, 10000} and leave
the question of finding intuitively robust and adaptable forgetting curves for a given environment.
The rest of the hyperparameters were set and explained in the Method section. Figure 3 shows the
evaluation return on 6 environments, all ran for 5 different seeds until 2.5 million frames.
Regarding Dreamer-v2 we chose to keep the default hyperparameters except for two components, the
frequency of the world-model training from every 16 to 1 steps and the RSSM training batch and
length size from 50 to 30. The former choice was made because we are analyzing sample efficiency
from learning fast world models and makes it therefore a more competitive comparison. This also
implies that comparison of sample-efficiency to previously stated results on the Dreamer-v2 paper
are not comparable. The latter choice was made due to GPU memory restrictions when using our
EM. We aimed to keep the usage of our model within a single 12 GB GPU. We therefore also had a
limitation on the dictionary sizes. We only kept 18 (Atari action space) dictionaries of size 500 which
also made the selectivity of storage even more relevant.
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