
Learning at Multiple Timescales

Matt Jones
Google Research, Brain Team

Mountain View, CA 94043
mcjones@google.com

Abstract

Natural environments have temporal structure at multiple timescales, a property that
is reflected in biological learning and memory but typically not in machine learning
systems. This paper advances a multiscale learning model in which each weight
in a neural network is a sum of subweights learning independently at different
timescales. A special case of this model is a fast-weights scheme, in which each
original weight is augmented with a fast weight that rapidly learns and decays,
enabling adaptation to distribution shifts during online learning. We then prove that
more complicated models that assume coupling between timescales are equivalent
to the multiscale learner, via a reparameterization that eliminates the coupling.
Finally, we prove that momentum learning is equivalent to fast weights with a
negative learning rate, offering a new perspective on how and when momentum is
beneficial.

1 Introduction

Natural environments exhibit correlations at a wide range of timescales, a pattern variously referred
to as self-similarity, power-law correlations, and 1/f noise [Kes82]. This is in stark contrast with the
IID environments assumed by many machine learning (ML) methods. It also differs from diffusion or
random-walk environments that are implicitly assumed by many online-learning methods such as
temporal-difference learning and stochastic gradient descent (SGD), and which exhibit only short-
range correlations. Moreover, biological learning systems are well-tuned to the temporal statistics of
natural environments, as seen in phenomena of human cognition including power laws in learning
[And82], power-law forgetting [WE97], long-range sequential effects [WJA+13], and spacing effects
[CVR+08, AS91]. Thus an important goal for machine learning is to incorporate similar inductive
biases into ML systems. This may yield improved performance in tasks with rich temporal structure,
as arise in online or continual learning settings with real-world data.

This paper analyzes a simple and general framework for learning in temporally structured environ-
ments, multiscale learning, which in the context of neural networks (NNs) amounts to an optimizer.
A common explanation for self-similar temporal structure in nature is that it arises from a mixture of
events at various timescales. Indeed, many generative models of 1/f noise involve summing indepen-
dent processes (e.g., wavelets or random walks) with varying time constants [EK09]. Accordingly, the
multiscale optimizer assumes multiple learning processes operating in parallel at different timescales.
In a NN, every weight is replaced by a family of subweights, each subweight having its own learning
rate and decay rate, that sum to determine the weight as a whole. Learning at multiple timescales
is a key idea in several theories in psychology and neuroscience, including conditioning [SCH02],
learning [BF16], memory [MPC+09, HK02], and motor control [KTS07]. The multiscale learner
isolates and simplifies this idea, by assuming knowledge at different timescales evolves independently
and that credit assignment follows standard gradient descent.

Here we prove exact correspondences between the multiscale optimizer and three other models: fast
weights [cf. HP87, BHM+16], the model synapse of Benna & Fusi [BF16], and momentum learning

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



[RHW86, Qia99]. The insight behind these proofs is that each of these models can be written in
terms of a linear update rule with diagonalizable transition matrix. Thus the eigenvectors of this
matrix all evolve independently. By writing the state of the model as a mixture of eigenvectors, we
effect a coordinate transformation that exactly yields the multiscale optimizer. These results imply
that the complicated coupling among timescales assumed by some models can be superfluous. More
generally, they support the multiscale learner as a unifying framework for theories of learning at
multiple timescales. Finally, they provide a new perspective on momentum learning, with implications
for how and when it is beneficial.

2 Multiscale learner

Assume a statistical model ŷt = h(xt,wt) and loss function L(yt, ŷt), where xt is the input on step
t, wt is the parameter estimate, ŷt is the model output, and yt is the target output. In a NN, wt
is the vector of current weights. For exposition, we assume the weights are updated by stochastic
gradient descent (SGD),wt+1 = wt − α∇wt

L(yt, ŷt), and we henceforth abbreviate the gradient as
∂wt
L. However, the following approach can be naturally composed with other optimizers, such as

extensions of SGD or Hebbian learning, by replacing −α∂wt
L with the appropriate update term.

Multiscale learning is motivated by the assumption that, in online learning tasks, the true or optimal
weights change over time, and that change occurs on multiple timescales. The multiscale optimizer
expands each weight into a sum of subweights, w =

∑n
i=1 ωi, each with a different learning rate αi

and decay rate γi. Thus the subweights evolve according to:

ωi,t+1 = γiωi,t − αi∂wt
L. (1)

Each ωi has characteristic timescale τi := (− log γi)
−1. Note that ∂wt

L = ∂ωi,t
L, so one can think

of the gradient for w being apportioned among the subweights (with total learning learning rate
α =

∑
αi), or equivalently of each subweight following its own gradient.

3 Fast weights

An important special case of multiscale learning arises with two timescales, w = ωslow + ωfast. We
assume γslow = 1 (no decay) and αfast > αslow. Thus each component of ωslow can be thought of as
the original weight, which is augmented by the corresponding component of ωfast, a second channel
between the same neurons that both learns and decays rapidly. The fast weights enable the system to
adapt quickly to distribution shifts while resisting catastrophic forgetting (Figure 1).

This model is conceptually similar to the fast weights approach of Ba, Hinton and colleagues
[HP87, BHM+16] in that it implements a form of short-term memory in the weight matrix. In that
previous work, the weights are updated by a different mechanism (Hebbian learning) than the primary
weights, and they act as a memory of recent hidden states in a recurrent network. In the present
conception, fast weights optimize the same loss as the primary weights, just with different temporal
properties, and they act as a memory for recent learning signals (e.g., loss gradients). Thus they are
perhaps better suited for handling distribution shifts of the sort considered here.

4 Benna-Fusi synapse

Benna and Fusi’s model synapse [BF16] is designed to capture how biochemical mechanisms in real
synapses implement a cascading hierarchy of timescales, and has been adopted in ML for continual
reinforcement learning [KSC18, KSC19]. The model assumes that, within each individual weight w
in a network, knowledge is maintained in a 1d hierarchy of variables u1, . . . , un, each dynamically
coupled to its immediate neighbors in what is analogous to a flow equation:

C1(u1,t+1 − u1,t) = g1(u2,t − u1,t)− ∂wtL (2)
Ck(uk,t+1 − uk,t) = gk−1(uk−1,t − uk,t) + gk(uk+1,t − uk,t) (3)

for 2 ≤ k ≤ n, with gn = 0. The external behavior of the synapse comes from u1 alone (i.e.,
w = u1), while u2:n act as stores with progressively longer timescales.

This update rule can be rewritten as ut+1 = Tut − dt, with transition matrix T determined by the
coefficients in (2-3), and external signal dt defined by d1,t = 1

C1
∂wt
L and d2:n ≡ 0. It can be shown

2



0 50 100 150 200
-1

-0.5

0

0.5

1 Figure 1: Illustration of fast weights. In this toy
example, a single weight w (blue) with constant
input (x ≡ 1) predicts a target signal T (black)
with quadratic loss L = 1

2 (T − w)2. The weight
is a sum of subweights wslow (yellow) and wfast

(red). Initial learning is rapid, due to wfast. Be-
cause of decay and the shared error signal, knowl-
edge is gradually transferred to wslow while wfast

returns to zero. When the task switches (trial
151), wfast enables rapid adaptation while long-
term knowledge is preserved in wslow. Thus the
model recovers quickly on the second reversal.
The general multiscale learner extends this idea
to an array of faster and slower weights.

that the transition matrix is diagonalizable, T = V ΛV −1, with eigenvalues Λii = λi < 1 (see
Appendix). We can further enforce V1· = 1, for a reason given below. We refer to the eigenvectors
(columns V·i) as modes of the system, because they are preserved over time up to a scalar. That is, if
the initial state is proportional to mode i, then in the absence of external signal (d ≡ 0), the system
will remain in that mode, decaying exponentially with rate factor λi:

u0 ∝ V·i =⇒ ∀t : ut = λtiu0. (4)
In general, any state can be written uniquely as a linear combination of modes, u =

∑
ωiV·i = V ω.

Therefore we can reparameterize the model as ω := V −1u, leading to the simplified update equation:
ωt+1 = Λωt + V −1dt. (5)

Because Λ is diagonal, there is no cross-talk between the modes, unlike in the original dynamics.
Thus we have derived the multiscale learner, with subweights ωi,t, decay rates λi, and learning rates
1
C1

[
V −1

]
i1

. The assumption V1· = 1 implies u1 =
∑
ωi, so the models agree on the external

behavior of the weight as a whole. Figure 2 illustrates the translation between the two models.

5 Momentum learning

The standard rationale for momentum learning is to smooth updates over time, so that oscillations
along directions of high curvature cancel out while progress can be made in directions with consistent
gradients [RHW86]. The momentum is defined as an exponentially filtered running average of
gradients, with weight update determined by current momentum:

gt+1 = βgt + (1− β)∂wt
L (6)

wt+1 = wt − ηgt+1. (7)
This formulation is equivalent to one in which the update ∆wt = wt+1 −wt includes a portion of
the previous update: ∆wt = −α∂wt

L+ β∆wt−1, with α = η(1− β).

Paralleling the analysis in Section 4, and again focusing on a single weight in the network to simplify
notation, we write the state of the momentum optimizer as [w, g]> and use (6-7) to obtain the update
rule: [

w
g

]
t+1

=

[
1 −ηβ
0 β

] [
w
g

]
t

+

[
−η(1− β)

(1− β)

]
∂wt
L. (8)

The transition matrix in (8) has eigenvectors [1, 0]> with eigenvalue 1, and [1, 1−βηβ ]> with eigenvalue
β. Now use this eigenbasis to define a reparameterization:[

w
g

]
=

[
1 1

0 1−β
ηβ

] [
ωslow

ωfast

]
. (9)

Substitution into (8) yields the reparameterized update rule:[
ωslow

ωfast

]
t+1

=

[
1 0
0 β

] [
ωslow

ωfast

]
t

−
[

η
−ηβ

]
∂wt
L. (10)

Thus we have recovered the fast-weight model, with decay γfast = β and learning rates αslow = η
and αfast = −ηβ. The negative fast learning rate is perhaps surprising and is discussed in Section 6.

3



1 2 3 4 5 6 7 8
-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

1 2 3 4 5 6 7 8
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8
-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15
A B C

F E D

1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8
-1

-0.5

0

0.5

1

Figure 2: Translation between Benna-Fusi model [BF16] and multiscale optimizer works by decom-
posing the state of the former into modes, or eigen-patterns of activation that decay independently,
which correspond to subweights in the multiscale optimizer. A: All modes for a default Benna-Fusi
model with n = 8 variables. B: An arbitrary initial state. C: Unique eigen-decomposition of the state
in Fig 2B. Implied values of the multiscale optimizer’s subweights can be read off as the values of
the curves at k = 1. D: Decay of the individual modes or subweights for 1000 steps (with no external
input) at rates given by their eigenvalues. E: Reconstruction of the final state exactly matches the
result of iterating the Benna-Fusi update (dotted arrow from Fig 2B). F: Decomposition of a unit
impulse to u1 (e.g., loss gradient, shown as grey bar) as a weighted sum of modes. Learning rates for
the corresponding subweights can be read off as the values of the curves at k = 1 (because V1i = 1).

6 Conclusions

The equivalences proved here, and others provable by similar methods, simplify the space of possible
models and provide a unified framework for investigating learning at multiple timescales. A key
feature of the multiscale optimizer is that the components all evolve independently, both in weight
decay between updates and in updating from their individual loss gradients. This makes the model
both conceptually and computationally simpler than past ones. Simulations reported in a companion
paper, using an online prediction task governed by 1/f noise in latent environmental parameters,
show that the multiscale optimizer significantly outperforms SGD and batch learning with finite
memory horizon, and nearly matches Bayes-optimal performance without the computational overhead
[JSE+22]. Taking all of these results together, the multiscale optimizer enjoys a combination of
normative, heuristic, and biological justification, good performance, and computational efficiency.
Future work will incorporate this method into state-of-the-art deep NN architectures, to explore
whether it yields ML systems that are better able to exploit temporal structure in natural environments.

A further contribution is the characterization of momentum as a fast weight with negative learning rate.
Although this connection may seem counterintuitive, it can be understood as follows: When αfast < 0,
the subweights learn in opposite directions, with the latent knowledge in ωslow overshooting the overt
knowledge in w = ωslow + ωfast. As ωfast decays upward toward 0, w catches up to ωslow, and the
model appears to continue learning from past input. Momentum acts in the same manner, as a form
of latent knowledge of past input that continues to drive later updates. This correspondence is exact
under the translation in Section 5. Put differently, learning at multiple timescales is motivated by
an expectation of positive autocorrelation in the environment, whereas momentum is effective at
smoothing out negative autocorrelation in the gradient signal (e.g., along highly curved directions in
weight space). The inherent opposition between these considerations may be reconcilable using the
present results that place momentum learning within the broader framework of multiscale learning.

4



References
[And82] John R. Anderson. Acquisition of cognitive skill. Psychological Review, 89:369–406,

1982.

[AS91] John R. Anderson and Lael J. Schooler. Reflections of the environment in memory.
Psychological Science, 2(6):396–408, 1991.

[BF16] Marcus K. Benna and Stefano Fusi. Computational principles of synaptic memory
consolidation. Nature Neuroscience, 19, 2016.

[BHM+16] Jimmy Ba, Geoffrey E. Hinton, Volodymyr Mnih, Joel Z. Leibo, and Catalin Ionescu.
Using fast weights to attend to the recent past. Advances in neural information processing
systems, 29, 2016.

[CVR+08] Nicholas J. Cepeda, Edward Vul, Doug Rohrer, John T. Wixted, and Harold Pashler.
Spacing effects in learning: A temporal ridgeline of optimal retention. Psychological
Science, 19(11):1095–1102, 2008.

[EK09] Iddo Eliazar and Joseph Klafter. A unified and universal explanation for lévy laws and
1/f noises. Proceedings of the National Academy of Sciences, 106(30):12251–12254,
2009.

[HK02] Marc W. Howard and Michael J. Kahana. A distributed representation of temporal
context. Journal of mathematical psychology, 46(3):269–299, 2002.

[HP87] Geoffrey E. Hinton and David C. Plaut. Using fast weights to deblur old memories.
In Proceedings of the 9th annual conference of the cognitive science society, pages
177–186, 1987.

[JSE+22] Matt Jones, Tyler Scott, Gamaleldin ElSayed, Mengye Ren, Katherine Hermann, David
Mayo, and Michael C. Mozer. Neural network online training with sensitivity to
multiscale temporal structure. In NeurIPS workshop on Memory in Artificial and Real
Intelligence (MemARI), 2022.

[Kes82] Marvin S. Keshner. 1/f noise. Proceedings of the IEEE, 70(3):212–218, 1982.

[KSC18] Christos Kaplanis, Murray Shanahan, and Claudia Clopath. Continual reinforcement
learning with complex synapses. In Proceedings of the 35th International Conference
on Machine Learning, Stockholm, Sweden, 2018. PMLR 80.

[KSC19] Christos Kaplanis, Murray Shanahan, and Claudia Clopath. Policy consolidation for
continual reinforcement learning. In Proceedings of the 36th International Conference
on Machine Learning, Long Beach, CA, 2019. PMLR 97.

[KTS07] Konrad P. Kording, Joshua B. Tenenbaum, and Reza Shadmehr. The dynamics of mem-
ory as a consequence of optimal adaptation to a changing body. Nature Neuroscience,
10(6):779–786, 2007.

[MPC+09] Michael C. Mozer, Harold Pashler, Nicholas Cepeda, Robert V. Lindsey, and Ed Vul. Pre-
dicting the optimal spacing of study: A multiscale context model of memory. Advances
in neural information processing systems, 22, 2009.

[Qia99] Ning Qian. On the momentum term in gradient descent learning algorithms. Neural
networks, 12(1):145–151, 1999.

[RHW86] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning internal
representations by error propagation. In D.E. Rumelhart and J.L. McClelland, editors,
Parallel distributed processing, Vol. 1, pages 318–362. MIT Press, Cambridge, MA,
1986.

[SCH02] JER Staddon, IM Chelaru, and JJ Higa. Habituation, memory and the brain: The
dynamics of interval timing. Behavioural Processes, 57(2-3):71–88, 2002.

5



[WE97] John T. Wixted and Ebbe B. Ebbesen. Genuine power curves in forgetting: A quantitative
analysis of individual subject forgetting functions. Memory & Cognition, 25(5):731–739,
1997.

[WJA+13] Matthew H. Wilder, Matt Jones, Alaa A. Ahmed, Tim Curran, and Michael C. Mozer. The
persistent impact of incidental experience. Psychonomic bulletin & review, 20(6):1221–
1231, 2013.

6



A Appendix

This appendix provides details on diagonalizing the transition matrix of the update rule for the
Benna-Fusi model, and the corresponding reparameterization in terms of the eigenbasis.

First, reparameterize the Benna-Fusi model so that its transition matrix is symmetric, as follows.
Recursively define

bk =

{
1 k = 1
bk−1ck
ck−1

1 < k ≤ n (11)

and write the state of the Benna-Fusi synapse as

φ = (
√
bkuk)1≤k≤n. (12)

The update becomes

φt+1 = Γφt + dt (13)

with

Γk,k = 1− gk−1 + gk
Ck

(14)

Γk−1,k = Γk,k−1 =
gk−1√
Ck−1Ck

. (15)

Symmetry of Γ implies it has an orthonormal eigenbasis, {ψ1, . . . ,ψn}, with corresponding eigen-
values λ1, . . . , λn. Because the scaling of eigenvectors is arbitrary, we can enforce ψi,1 = 1 for all
i.

To translate the eigenbasis back to u, defineB = diag(
√
b) so that φ = Bu and T = B−1ΓB. It

is then easily verified that

V·i = B−1ψi, (16)

is an eigenvector of T with eigenvalue λi. Therefore T = V ΛV −1, as claimed in the main text. Note
that the choice ψi,1 = 1 entails V1,i = 1 (because b1 = 1). Finally, Ψ = [ψ1, . . . ,ψn] is invertible
because it comprises a basis, and therefore so is V = B−1Ψ. Therefore the reparameterization
u 7→ ω = V −1u is well-defined.

7


	Introduction
	Multiscale learner
	Fast weights
	Benna-Fusi synapse
	Momentum learning
	Conclusions
	Appendix

