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Abstract

Human episodic memories are (re)constructed, share neural substrates with imag-
ination, and show systematic biases that increase as they are consolidated into
semantic memory. Here we suggest that these main features of human memory
are characteristic of ‘teacher-student’ training of a neocortical generative model by
a one-shot memory system in the hippocampal formation (HF). As we simulate
with image datasets, the ‘students’ (variational autoencoders) in association cortex
develop a compressed ‘latent variable’ representation of experience by learning
to reconstruct replayed samples from the ‘teacher’ (a modern Hopfield network).
Recall and imagination require these representations to be decoded into sensory
experience by the HF and return projections to sensory cortex, whereas semantic
memory and inference rely directly on the latent variables without requiring the HF.
We extend preceding models to explain the construction of episodic memory, and
the interaction between semantic memory and episode generation more broadly.

1 Introduction

Episodic memory is thought to be constructive; recall is the (re)construction of a past experience,
not the retrieval of a copy [} 2]. Episodic and semantic memory are thought to complement each
other, with the former rapidly capturing cross-modal experience via long term potentiation in the
hippocampus, enabling the latter to learn statistical regularities over multiple experiences in the cortex
(3.4, 15, i6].

The standard model of systems consolidation is a simple transfer of information from the hippocampus
to neocortex [7], whereas other views suggest that episodic and semantic information from the same
events can exist in parallel [8]. However, consolidation does not just change which brain regions
support memory traces; it also converts them into a more abstract representation, a process sometimes
referred to as semanticisation [9} [10]. Whilst several models suggest how episodic memory shapes
semantic memory [J3]], few account for the latter’s influence on the former.

Here, we propose that consolidated memory takes the form of a generative model, trained to capture
the statistical structure of stored events by learning to reproduce them. This builds on existing
models of spatial cognition in which recall and imagination of scenes involve the same neural circuits
(L1412} [13]]. The link between scene generation and recall follows from the reconstructive nature of
memorys; it is supported by evidence from neuropsychology that hippocampal damage leads to deficits
in imagination [14], dreaming [15], and daydreaming [[16], and by evidence from neuroimaging that
recall and imagination involve similar neural processes |17} [18]].

‘We model consolidation as the training of a generative neural network by an initial auto-associative en-
coding of memory, through the mechanism of teacher-student learning [[19]. Recall after consolidation
has occurred is a generative process mediated by schemas, as are other forms of scene construction.
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This adds to research on the relationship between generative models and consolidation [20l 21]], and
on the use of variational autoencoders to model the hippocampal formation (HF) [22} 23] [24]]. Table
shows some of the key features required in a model of memory processing, and existing models of
each; we suggest our model combines these features.

Figure 1: Key features required in a model of memory processing

No. | Feature ‘ Evidence ‘ Existing models

1 ’One-shot’ encoding followed by | [3} 4} 7] CLS [5] and most
gradual consolidation subsequent models

2 Semantic content of memory be- | Lesions to HF preserve re- | CLS [S] and most
comes HF-independent mote memories in seman- | subsequent models

tic form [25) 126]
3 But episodic recall stays HF-| Vivid, detailed scene | Multiple trace the-

dependent (re)construction requires | ory [§]
HF [8]
4 Common mechanism for episode | Similar neural circuits in- | Bicanski and
generation volved in recall and imagi- | Burgess [[13]]

nation [IL1, 17, [18]].

2 The model

Our model simulates how the initial representation of memories can be used to train a generative
model. First the hippocampus rapidly encodes an event (modelled as one-shot memorisation in a
modern Hopfield network). Then a generative network (modelled by a variational autoencoder) takes
over, having been trained on replayed representations from the initial hippocampal network. This
makes the memory more abstracted, more supportive of generalisation and relational inference, and
also more prone to distortion. The generative network learns to encode experiences as latent variables
(or ‘schemas’), which can be used to reconstruct (for memory) or construct (for imagination) sensory
experience via the HF and its return projections to neocortex, or to support semantic memory and
inference. Semantic memory and inference depend directly on the latent variable representations and
are therefore possible after lesions to the hippocampal formation. (See Figure[2})

Before consolidation, a modern Hopfield network encodes the memory. Two properties of this
network are particularly important for our simulation: firstly, memorisation can occur with only one
exposure, and secondly, random inputs to the network retrieve attractor states, allowing sampling
from the whole set of stored patterns. We consider the biological implementation of the modern
Hopfield network as feature units and memory units suggested by Krotov and Hopfield [27]. For
simplicity, the simulations here assume the number of feature units is equal to the dimensionality of
the input data, however in reality they are likely to encode a compressed representation of the input
(but one high-dimensional enough to capture the details of a memory).

After consolidation, a generative network also encodes the memory. Specifically, we use variational
autoencoders (VAESs), so that the most compressed layer of the autoencoder represents a set of latent
variables which can be sampled from [28]]. In general, reliance on the generative model increases over
time as it learns to remember a particular episode, and the hippocampal encoding decays. However,
this is likely to be a gradual transition, and many memories involve both the initial hippocampal
encoding and generative model in their recall. During perception, the generative model provides
an ongoing estimate of novelty from its reconstruction error. Memories that are very consistent
with previous experience do not need to be encoded in detail in the initial ‘teacher’ network (see
(29, 130% 311 132]).

The generative model trained through consolidation also supports imagination, in fitting with the
evidence that episodic memory and imagination share neural substrates. Items can either be generated
from scratch, or by transforming existing items. The former can be achieved by randomly sampling
from the latent space. The latter can be achieved by interpolating between the latent representations of
items, or by doing vector arithmetic in the latent space (i.e. inference). In addition, the system learns
to support semantic memory, which relies on projections from the latent variable representation. The



latent variables encode the key facts about an episode, and semantic memory draws on these directly,
rather than reconstructing them back into a sensory experience. We suggest that this corresponds
to the persistence of semantic forms of autobiographical memory even when the hippocampus is
damaged.

Teacher-student learning [[19] has clear relevance to the transfer of memories from one neural network
to another during consolidation [33]]. Based on this concept, we use outputs from the initial network
to train the generative network in our simulations. To do so, we give random noise as an input to the
modern Hopfield network, then use just the outputs of the network to train the VAE. (These outputs
represent the high-level sensory representations activated by hippocampal pattern completion, via
return projections to sensory cortex.) The noise input to the initial network could potentially represent
random activation during sleep (34, (35, 136]. In other words, random inputs to the hippocampus result
in the reactivation of memories, and this reactivation results in consolidation.

Which brain regions do the components of this model represent? The initial auto-associative network
involves the hippocampus binding together the constituents of a memory in the neocortex. The
generative network involves these areas, and additionally the association cortex; in particular, the
medial entorhinal cortex (mEC) and medial prefrontal cortex (mPFC) are both prime candidates for
encoding a latent variable representation of experience. Firstly, the EC is the main route between
the hippocampus and neocortex, and is also where grid cells are most often observed [37]]. The
mEC has been linked to structural inference, and prior models suggest it encodes latent structures
underlying spatial and non-spatial tasks [22, 38]]. Secondly, the mPFC is highly connected to the
HF and plays a crucial role in episodic memory processing [39, 140, 41, 42| 43| 144]]. Tt is thought
to encode schemas [45]], and has been implicated in transitive inference [46] and the integration of
memories [47]]. Furthermore, Mack et al. [48]] suggest the mPFC performs dimensionality reduction
on incoming data, compressing representations to remove irrelevant features as learning progresses.
Therefore we suggest that these regions are involved in the extraction of underlying structure from
experience in the generative model.

3 Results

In the following simulations, images represent events. Results are shown across four separate image
datasets: MNIST [49]], Fashion-MNIST [50]], Shapes3D [51]], and Symmetric Solids [52]]. Each new
event is initially encoded as an auto-associative trace in the hippocampus, which we simulate with a
modern Hopfield network. Importantly, encoding is one-shot. We model recall as (re)constructing
a memory from a partial input. In the case of image data, this can be conveniently modelled by
presenting a network with a partial version of the image.

Firstly, we simulate recall in the initial network. The network memorises a set of images, representing
events, as described above. When the network is given a partial input, it retrieves the closest attractor
state, i.e. the closest memory. Activity propagates through the network, and the values of the nodes
are adjusted to minimise the energy function. Even when the network is given random noise, it
retrieves memories (see Figure [3).

Secondly, we simulate recall in the generative network. As shown in Figure[d] a generative network
was trained on the reactivated memories from the initial network. (One variational autoencoder was
trained per dataset from the corresponding modern Hopfield network’s outputs.) When presented
with a partial version of an item from the training data, the model is able to reconstruct the original.
(See also Figure 5] for plots of reconstruction error over time.) Furthermore, it can ‘imagine’ new
items, e.g. by interpolation as shown in Figure 6]

Finally, to illustrate the idea that the latent variables capture the key ‘facts’ of a scene, we trained
models to predict attributes of images from their latent vectors across the four datasets. Figure[5|shows
that semantic ‘decoding accuracy’ increases as training progresses, thanks to structure developing in
the latent space. (Decoding accuracy was measured by training a new support vector classifier on 200
examples at the end of each epoch, and measuring classification accuracy on a held-out test set.) In
addition, as shown in Figure[6] when there is only a very small amount of training data, predicting
the attributes of an image from its latent vector performs better than predicting the attributes from the
original images from scratch. The parts of the model representing the HF are not required for this
task, in agreement with the neuropsychology data [25} 26].
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Figure 2: a) Basic architecture of the model. b) Episodic memory after consolidation: a partial input
is mapped to latent variables. The HF and return projections to neocortex then decode these back into
an experience. ¢) Imagination: latent variables are decoded into an experience by the HF and return
projections to neocortex. d) Semantic memory: a partial input is mapped to latent variables, which
capture the ‘key facts’ of the scene
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Figure 3: Random noise inputs to a modern Hopfield network reactivate its memories. Results are

shown across four datasets: a) MNIST, b) Fashion-MNIST, c) Shapes3D (converted to black and
white), and d) Symmetric Solids. One modern Hopfield network was used per dataset
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Figure 4: A generative model (in this case, a variational autoencoder) can recall images from a partial
input, following training on reactivated memories from a modern Hopfield network. One generative
model was trained per dataset.
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Figure 5: Upper row: reconstruction error (red) and decoding accuracy (blue) during training. The
latter is measured by training a new support vector classifier on 200 examples at the end of each
epoch. Lower row: the latent space projected into 2D with TSNE, colour coded by label. Results
are shown across four datasets: a) MNIST, b) Fashion-MNIST, c¢) Shapes3D (converted to black and
white), and d) Symmetric Solids.
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Figure 6: Left: Generating new items with interpolation in latent space. Each row shows points along
a line in the latent space between two items from the training data. Right: Accuracy against training
dataset size when learning to predict object shape from Shapes3D images in two ways: by training a
perceptron on latent vectors (blue), and by training a convolutional neural network from scratch (red).

4 Discussion

We model systems consolidation as the training of a generative neural network through teacher-
student learning. First the hippocampal ‘teacher’ rapidly encodes an event, modelled as one-shot
memorisation in a modern Hopfield network. After exposure to replayed representations from
the ‘teacher’, a generative ‘student’ model representing the association cortex and HF supports
reconstruction of events. In contrast to the relatively veridical initial encoding, the generative model
learns to capture the probability distributions underlying experiences, or ‘schemas’. This enables
not just efficient recall, in which the model reconstructs memories without the need to store them
individually, but also imagination (by sampling from the distributions), inference (by using the learned
statistics of experience to predict the values of unseen variables), and semantic memory.

Further research will extend the model to demonstrate how sensory and conceptual elements may be
combined in memory, reducing the dimensionality of the initial network’s input, and allowing very
recent memory to exploit predictions from the generative model. (Each memory is represented as the
sum of a predictable and an unpredictable component, where the predictable component is a schema,
and the unpredictable component consists of parts of the stimuli that were poorly predicted by the
existing generative model. The modern Hopfield network model of initial encoding in the HF can
have both conceptual and sensory feature units, where conceptual feature units may correspond to
concept cells [53]].) Other areas for future work include extending these findings to sequences, and
exploring how the system might achieve continual representation learning.
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5 Appendix

Code for all simulations can be found in the supplementary materials.

Diagrams were created using BioRender.com.

5.1 Datasets

The following datasets (all covered by the Creative Commons Attribution 4.0 License) were used in
the simulations:

Dataset Origin

MNIST [49] https://www.tensorflow.org/datasets/catalog/mnist
Fashion-MNIST [350] https://www.tensorflow.org/datasets/catalog/fashion_mnist
Shapes3D [151]] https://www.tensorflow.org/datasets/catalog/Shapes3D
Symmetric Solids [152]] https://www.tensorflow.org/datasets/catalog/symmetric_solids
KMNIST [54]] https://www.tensorflow.org/datasets/catalog/kmnist

5.2 Model details
5.2.1 Variational autoencoders

An autoencoder is a neural network which encodes an input into a shorter vector, and then decodes
this compressed representation back to the original. It learns by minimising the difference between
the inputs and outputs. There is no guarantee that decoding an arbitrary compressed representation
produces a sensible output, so standard autoencoders do not perform well as generative models. In
other words, there are many regions in the vector space of the compressed representations which
do not correspond to anything meaningful. However, one can train an autoencoder with special
properties, such that each latent variable is normally distributed for a given input, which allow one to
sample realistic items. The result is called a variational autoencoder [28 55]]. (Latent variables can
be thought of as hidden factors behind the observed data.)

The VAE:s in these simulations use convolutional layers to better encode and decode image features.
Convolutional layers learn sliding windows that scan the image for a relevant feature, outputting a
stack of feature maps [56]. Applying such a layer to the output of a preceding convolutional layer has
the effect of finding higher-level features in the stacked feature maps, i.e. if the first convolutional
layer learns to identify simple features such as lines at different orientations, the second convolutional
layer might learn features consisting of combinations of lines.

In the encoder used in most simulations, five convolutional layers, plus a final pooling layer, gradually
decrease the width and height of the representation and increase the depth (as is standard when using
convolutional neural networks to encode images). In the decoder, five convolutional layers alternate
with up-sampling layers to increase the width and height of the representation and decrease the depth.
The encoder has filters (i.e. convolution windows, or feature detectors) of 4x4 pixels per layer. The
convolutional layers one to five have 32, 64, 128, 256 and 512 filters respectively. The decoder has
filters of 3x3 pixels per layer. The convolutional layers one to five have 128, 64, 32, 16 and 3 filters
respectively (i.e. the final three filters are the three channels of an RGB image).

5.2.2 Modern Hopfield networks

A Hopfield network uses a simple Hebbian learning rule to memorise patterns after a single exposure
[S7]. However one issue is their limited capacity; a Hopfield network can only recall approximately
0.14d states, where d is the dimension of the input data [58]). It therefore seems unlikely that classical
Hopfield networks are a good model of hippocampal memory encoding — even if we assume that only
a temporary store is required until consolidation occurs. In addition, they frequently recall incorrect
memories, as the energy function can get ‘stuck’ in a local minimum.

However, recent research has shown that the storage capacity of a Hopfield network can be increased
in several ways. Krotov and Hopfield [59] devise a new energy function involving a polynomial
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function, and a corresponding update rule to minimise this; the activation of a node flips from -1 to
1 or vice versa if the energy is lower in the flipped state. Demircigil et al. [60]] develop this idea
further, increasing the capacity from approximately 0.14d to 2%/ with the use of an exponential
energy function. Ramsauer et al. [S8]] extend this to memories involving continuous variables and
further amend the energy function, enabling the recall of much more complex data. (For example,
whilst classical Hopfield networks can only recall black and white images, the modern variant can
recall greyscale ones.)

However, understanding these new variants of Hopfield networks in terms of neural networks is less
straightforward. To recap, the equations below from Krotov and Hopfield [59] give the energy of a
standard Hopfield Network. During recall, a node’s value is updated to the sign of the weighted sum
of its inputs; in other words, a node’s value is flipped if it decreases the energy. The matrix T gives
the weights of the network, and the calculation of T is simply Hebbian learning.
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The equation below from Krotov and Hopfield [27] gives the energy of a dense Hopfield network.
In this example F(x) is 22, but it can be any polynomial function. As above, at recall time a node’s
value flips if it decreases the energy. When F(x) is 22, the equation reduces to the one above for a
standard Hopfield network. In any other case, the tensor T has more than two indices, and can no
longer be thought of a matrix produced by Hebbian learning. This means the energy is no longer a
function of weights and activations in a neural network. Modern Hopfield networks [27] suffer from
the same problem.
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Krotov and Hopfield [27] suggest a way to overcome this problem by using hidden units (which they
call ‘memory units’) in addition to the ‘feature units’ which represent the input. As a result, a modern
Hopfield network can be understood as a neural network, like its predecessor. The authors provide
two equations for the evolution of the feature neurons and hidden neurons over time. Rather than
using discrete time steps as in a classical Hopfield network, time is modelled as continuous. They
therefore give a pair of differential equations, in which change to each set of currents is driven by the
weighted sum of currents in the other layer. They then define an energy function, chosen ‘so that the
energy function decreases on the dynamical trajectory’. The energy function has three terms: energy
in the feature neurons, energy in the hidden neurons, and energy from the interaction between the
two groups. Importantly, the interaction term can be described in terms of two-body synapses, so
once again the energy is a function of weights and activations in a neural network.

The authors state that ‘the memory patterns ... can be interpreted as the strengths of the synapses
connecting feature and memory neurons’. To understand the intuition behind this, suppose we set the
weights connecting a particular hidden node with the feature neurons to the values of the pattern to
be memorised. Then activating the hidden node results in the pattern being reinstated in the feature
neurons. In other words, each hidden node represents a memory, and each memory could be encoded
using Hebbian learning. The key point is that the energy does not require a matrix of stored patterns,
unlike in earlier formulations of modern Hopfield networks — the patterns are encoded in the weights,
and the energy is a function of weights and activations as explained above.

Krotov and Hopfield [27] show that under different circumstances, their formulation can be simplified
to dense associative memory [59], or modern Hopfield networks [S8]]. Having established that modern
Hopfield networks increase memory performance and are biologically plausible (in the sense that
they involve only ‘two-body synapses’, and that memories can be stored as weights), we use them to
model the initial learning in the hippocampus; Ramsauer et al. [S8] provide a Python implementation
that our code is based on.

An important question is how the memories get encoded as the weights of a bipartite graph in the
Krotov and Hopfield [27] formulation of a modern Hopfield network. Each memory is bound together
by a single node, which connects the features that comprise that memory. The weights between a
given memory node and the feature nodes are simply the values of the features for that memory;
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these weights can be learned by Hebbian learning. Therefore encoding in a modern Hopfield network
is very similar to previous models of the hippocampus as ‘indexing’, or binding together, a set of
memory components [6]. The innovative aspect of modern Hopfield networks is the update rule,
which is cleverly designed to guarantee the desired properties.

It should be noted that the initial model could be swapped out for other computational models of
associative memory, providing they i) are high capacity, ii) can retrieve memories from noise, and iii)
are capable of one-shot memorisation.
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